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1 Introduction

This book is a collection of all the online reference material for the Control
System Toolbox. It includes the following:

= GUI Reference — Reference material for the LTI Viewer, the SISO Design
Tool, and right-click menus for response plots

= Function Reference — References pages for all the functions included in the
Control System Toolbox

=« Block Reference — Reference pages for Simulink blocks included in the
Control System Toolbox
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2 LTI Viewer
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The LTI Viewer is a graphical user interface (GUI) that supports ten plot
responses, including step, impulse, Bode, Nyquist, Nichols, zero/pole, sigma
(singular values), 1sim, and initial plots. The latter two are only available at
the initialization of the LTI Viewer; see 1tiview for more information.

The LTI Viewer is configurable and can display up to six plot type and any
number of models in a single viewer. In addition, you can display information
specific to the response plots, such as peak response, gain and phase margins,
and so on.

You can open the LTI Viewer by typing
ltiview

at the MATLAB prompt. You can also open an LTI Viewer from the SISO
Design Tool; see “SISO Design Tool” on page 2-1 for more information.

Note Click on any of the plots of the LTI Viewer, shown below, to get help on
selecting characteristics for the plot. Click on the menu bar to get help on its
contents. Click on the right-click menus, also shown below, to get help on
right-click menu features.
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The LTI Viewer and Right-Click Menus for SISO and MIMO/LTI Array Models.
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LTI Viewer Menu Bar
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Note Click on File, Edit, Window, or Help on the menu bar pictured below
to get help on the menu items.

This picture shows the LTI Viewer menu bar.

<) LTI Viewer =] E3
File Edit “Window Help

Tasks that you can perform using the LTI Viewer menu bar include:

= Importing and exporting models

= Printing plot responses

= Reconfiguring the Viewer (add or remove plot responses)

=« Displaying critical values (peak responses, etc.) and markers on each plot

File

Note Click on any of the items listed in the File menu pictured below to get
help contents.

Mew Viewer Ctrl+1

Import..
Export...

Toolbox Freferences..

Print... Ctrl+F
Frint to Eigure
Close Ctrl+4y

You can use the File menu to do the following:

< Open a new LTI Viewer



LTI Viewer Menu Bar

= Import and export models

= Set plot preferences for all the plots generated by the Control System Toolbox
= Print response plots

<« Close the LTI Viewer

New Viewer
Select this option to open a new LTI Viewer.

Import Using the LTI Browser
Import in the File menu opens the LTI Browser, shown below.

4 |LTI Browser x|

Select the systems to import

M ame Size Class
G 1=zl tf -
Goll 1=zl tf J
Gol2 1=zl tf
Gcold 1=zl tf
Gzervo 1=1 zpk
cl==sFi 2xd ==
frdFs 2m2 frd
frdG 1=l frd
m2d 4-D tf
==F8 2xd ==
sy _dc 1=1 ==

OF. | Eancell Help | Apply |

Youcanusethe LTI BrowsertoimportLTImodelsintothe LTI Viewer.

To import a model

= Click on the desired model in the LTI Browser List. To perform multiple
selections:

a Hold the Control key and click on the names of nonadjacent models.

b Hold the Shift key while clicking, to select a set of adjacent models.

2-5
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<« Press the OK or Apply Button

Note that models must have identical numbers of inputs and outputs to be
imported into a single LTI Viewer.

For importing, the LTI Browser lists only the LTI models in the main MATLAB
workspace.

Export Using the LTI Viewer Export Window
Export in the File menu opens the LTI Viewer Export window, shown below.

#|LTI Yiewer Export | x|
———  Ewxport List
o Ewport to workzpace I

Goll -

Gzl2 Enport to Digk I

Gz=13

Gservo

frdi Cancel I

d
sy=rs Help I

The LTI Viewer Export window lists all the models with responses currently
displayed in your LTI Viewer. You can export models back to the MATLAB
workspace or to disk. In the latter case, the Control System Toolbox saves the
files as MAT-files.



LTI Viewer Menu Bar

If you select Export to Disk, this window appears.

Export to Disk EHE

Save ir: Ia temp j gl IEE_

File name: IViewerdata.mat Save I
Save as type: IMAT-fiIes [*.mat] j Cancel |

Choose a name for your model(s) and press Save. Your models are stored in a
MAT-file.

Toolbox Preferences

Select Toolbox Preferences to open the Toolbox Preferences editor, which sets
preferences for all response objects in the Control System Toolbox, including
the viewer.

Print
Print sends the entire LTI Viewer window to your printer.

Print to Figure
Print to Figure sends a picture of the selected system to a new figure window.

Note that this new figure is a MATLAB figure window and not an LTI Viewer.

Close
Close closes the LTI Viewer.

Edit

Note Click on any of the items listed in the Edit menu pictured below to get
help contents.

2-7
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Flot Configurations...
Systems 4

Line Styles...
“iewer Preferences...

The Edit menu contains the following options:

= Plot Configurations — Opens the Plot Confi gurations window
= Systems — The Systems menu item has two selections:

- Refresh updates imported models to reflect any changes made in the
MATLAB workspace since you imported them.

- Delete opens the LTI Browser for System Deletion.
=« Line Styles — Opens the Line Styles editor
= Viewer Preferences — Opens the Viewer Prefer ences editor

Plot Configurations Window — Selecting Response Types

Plot Configuration under the Edit menu opens the Plot Configurations
window.

# Plot Configurations =] E3
Select a rezponse plot configuration Flemaiea s
e e e .
1 1 1 1: Istep j
2 2 Iimpulse j
2
3
* Ibode 'l
e e o 1
: | poledzen =
2 ] TR ! =
5 | rpquist =
1 L |
E: |nichals =
QK | Eancell Help | Apply |

Use this window to select the number and kind of response plots you want in a
single instance of the LTI Viewer. You can plot up to six response plots in a
single viewer. Click the radio button to the upper left of the configuration you
want the viewer to use.



LTI Viewer Menu Bar

You can select among eight response types for each plot in the viewer. These
are the available response types:

= Step

= Impulse

= Bode — Plots the Bode magnitude and phase

= Bode mag. — Plots the Bode magnitude only

< Nyquist

= Nichols

= Sigma

=« Pole/Zero map

Systems

The Systems menu item has two selections, Refresh and Delete. This figure
shows the two options.

Flot Configurations... |

ms

Befresh
Delete...

Line Styles...
YWiewer Preferences..

Refresh updates imported models to reflect any changes made in the MATLAB
workspace since you imported them. Delete opens the LTI Browser for System
Deletion.

2-9
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Delete Using the LTI Browser for System Deletion
Delete under Systems in the Edit menu opens the LTI Browser, shown below.

#|LTI Browser E |

Select the zystems to delete

Mare Size Class
5] 1=l tf -
Goll 1=l tf _J
Gol2 1=1 tf
G=l3 1=l tf
Gzervo 1=l zpk
frdG 1=1 frd
sv=_dc 1=l ==

[

k. Cancel Help | Apply |

To delete a model

= Click on the desired model in the LTI Browser List. To perform multiple
selections:

a Click and drag over several variables in the list.
b Hold the Control key and click on individual variables.

¢ Hold the Shift key while clicking, to select a range.
= Press the OK or Apply Button



LTI Viewer Menu Bar

Line Styles Editor

Select Line Styles under the Edit menu to open the Line Styles editor, shown
below.

#Line Styles [ ()]
Diistinguizh by:
. Mo
Color Marker Linestyle Distinction

Systems i+ o o o
Inputs o o o i+
Outputs o o o i+
Channels e e e o

Color Order Marker Order Linestyle Order

t datted
QK | Cancel | Help | Aol |

The Line Styles editor is particularly useful when you have multiple systems
imported. You can use it change line colors, add and rearrange markers, and
alter line styes (solid, dashed, and so on).

The Linestyle Preferences window allows you to customize the appearance of
the response plots by specifying:

= The line property used to distinguish different systems, inputs, or outputs
= The order in which these line properties are applied

Each LTI Viewer has its own Linestyle Preferences window.

Setting Preferences. You can use the “Distinguish by” matrix to specify the line
property that will vary throughout the response plots. You can group multiple
plot curves by systems, inputs, outputs, or channels (individual input/output
relationships). Note that the Line Styles editor uses radio buttons, which
means that you can only assign one property setting for each grouping (system,
input, etc.).

2-11
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Ordering Properties. The Order field allows you to change the default property
order used when applying the different line properties. You can reorder the
colors, markers, and linestyles (e.g., solid or dashed).

To change any of the property orders, press the up or down arrow button to the
left of the associated property list to move the selected property up or down in
the list

Viewer Preferences

Viewer Preferences opens the LTI Viewer Preferences editor, which you can
use to set response plot defaults for the LTI Viewer that is currently open.

For a complete description of the LTI Viewer Preference editor, as well as all
the property and preference editors available in the Control System Toolbox,
see “Custo mization” in the online Control System Toolbox documentation. To
go directly to the LTI Viewer Preferences editor documentation, see “LTI
Viewer Preferences” in the same document.

Window

Use the Window menu to select which of your MATLAB windows is active.
This menu lists any window associated with MATLAB and the Control System
Toolbox. The MATLAB Command Window is always listed first.

Help
The Help menu links to this help file.



Right-Click Menu for SISO Systems

Right-Click Menu for SISO Systems

Note Click on items in the right-click menu pictured below for help contents.

Flot Type
Systems

Characteristics
Grid
Zoam

]

Froperies...

This right-click menu appears when you have a SISO system imported into
your LTI Viewer. If you have a MIMO system, or an LTI array containing
multiple models, there are additional menu options. See “Right-Click Menus
for MIMO Systems and LTI Arrays” on page 2-21 for more information.

You can use the right-click menus to perform the following tasks:

= Change the plot type in the viewer

= Select and deselect imported models for display
< Add or remove grid lines

= Zoom in on areas of plots

= Open the Property Editor

2-13
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Plot Type
Flot Type 4 v Step
Systems b Impulse
o Bode
Characteristics .y
Grid ND = tag'
Zoom 4 .qus
- Nichals
Properties... Sigma
FolefZero
Lsim
Initial

Select which plot type you want to display. The LTI Viewer shows a check to
mark which plot is currently displayed. These are the available options:

= Step — Step response

= Impulse — Impulse response

< Bode — Magnitude and phase plots

= Bode Mag. — Magnitude only

= Nyquist — Nyquist diagram

= Nichols — Nichols chart

=« Sigma — Singular values plot

< Pole/Zero — Pole/Zero map

You cannot switch to Lsim or Initial. To access these options, use '1sim' and

‘initial' flags when invoking the LTI Viewer. See 1tiview for more
information.



Right-Click Menu for SISO Systems

Systems

Flot Type 4 |

ld v Gcll (blue) |

LLk=3

Characteristics
Grid

Zoom 4
Froperties...

Use Systems to select which of the imported systems to display. Selecting a
system causes a check mark to appear beside the system. To deselect a system,
select it again; the menu toggles between selected and deselected.

Characteristics

The Characteristics menu changes for each plot response type. The next
sections describe the menu for each of the eight plot types.

Step Response
Step plots the model’s response to a step input.

Flot Type 4
Systems 4

Cha cs Peak Response

Grid Settling Time
Zoom »  Rise Time

L Stoady State

Froperties...
You can display the following types of information in the step response:
= Peak Response — The largest deviation from the steady-state value of the

step response

=« Settling Time — The time required for the step response to decline and stay
at 5% of its final value

= Rise Time — The time require for the step response to rise from 10% to 90%
of its final value

=« Steady-State — The final value for the step response

2-15
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Impulse Response
Impulse Response plots the model’s response to an impulse.

Feak Response
Settling Time

The LTI Viewer can display the following types of information in the impulse
response:

Flot Type 4
Systems 4

Froperties...

= Peak Response — The maximum positive deviation from the steady-state
value of the impulse response

=« Settling Time — The time required for the step response to decline and stay
at 5% of its final value

Bode Diagram
Bode plots the open-loop Bode phase and magnitude diagrams for the model.

Feak Response
Stability Margins

The LTI Viewer can display the following types of information in the Bode
diagram:

Flot Type 4
Systems 4

Froperties...

= Peak Response — The maximum value of the Bode magnitude plot over the
specified region

= Stability Margins (min) — The minimum phase and gain margins. The gain
margin is defined to the gain (in dB) when the phase first crosses -180°. The
phase margin is the distance, in degrees, of the phase from -180° when the
gain magnitude is 0 dB.

= Stability Margins (all) — Display all stability margins

2-16



Right-Click Menu for SISO Systems

Bode Magnitude
Bode Magnitude plots the Bode magnitude diagram for the model.

Flot Type 4
Systems

-

Feak Response |

Froperties...

The LTI Viewer can display the Peak Response, which is the maximum value
of the Bode magnitude in decibels (dB), over the specified range of the diagram.

Nyquist Diagrams
Nyquist plots the Nyquist diagram for the model.

Flot Type 4

Systems 4

Ch ; Feak Response
Gri Stability Margins
Zoom ]

Froperties...

The LTI Viewer can display the following types of information in the Nyquist
diagram:

= Peak Response — The maximum value of the Nyquist diagram over the
specified region

= Stability Margins — The gain and phase margins for the Nyquist diagram.
The gain margin is the distance from the origin to the phase crossover of the
Nyquist curve. The phase crossover is where the curve meets the real axis.
The phase margin is the angle subtended by the real axis and the gain
crossover on the circle of radius 1.

2-17



2 LTI Viewer

2-18

Nichols Charts
Nichols plots the Nichols Chart for the model.

Flot Type 4

Systems 4

Chs tics Feak Response
Grid Stability Margins
Zoom ]

Froperties...

The LTI Viewer can display the following types of information in the Nichols
chart:

= Peak Response — The maximum value of the Nichols chart in the plotted
region.
=« Stability Margins — The gain and phase margins for the Nichols chart.

Sigma
Sigma plots the singular values for the model.

Flot Type
Systems 4

Feak Response |

Froperies

The LTI Viewer can display the Peak Response, which is the largest
magnitude of the Sigma plot over the plotted region.

Pole/Zero

Pole/Zero plots the poles and zeros of the model with ‘X’ for poles and ‘o’ for
zeros. There are no Characteristics available for pole-zero plots.



Right-Click Menu for SISO Systems

Grid
The Grid command activates a grid appropriate to the plot in the region you
select.

Flot Type 4
Systems 4

Characteristics

Zoom 4
Froperties...
Zoom

The Zoom command zooms in and out of the plot region selected.

Flot Type 4
Systems 4

Characteristics

Girid
[Zoom Y
Froperties... In-ix
In-'

i

There are four options:
= In-X — Zoom in on the specified strip of the x axis.
= In-Y — Zoom in on the specified strip of the y axis.

= X-Y — Zoom in on the specified box region of the x and y axes.
= Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click
and drag your mouse to create a rectangular region that you want to zoom in
on.

Out restores the previous appearance of the plot. Note that Out is grey when
you have reached the limit of zooming out.

2-19
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Properties

Use Properties to open the Property Editor. This GUI allows you to customize
labels, axes limits and units, grids and font styles, and response characteristics
(e.g., rise time) for your plot.

For a full description of the Property Editor, see “Customizing Response Plot
Properties” online in the Control System Toolbox documentation.

2-20
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Right-Click Menus for MIMO Systems and LTI Arrays

All of the menu options described in Right-Click Menu for SISO Systems hold
when you have imported a MIMO model or LTI Array containing multiple
models.

Note, however, that when you have a MIMO model or LTI array displayed, the
right-click menus contain additional options: Axis Grouping and 1/O selector.
These features allow you to quickly reshuffle multiple plots in a single LTI
Viewer

Note Click on items in the right-click menu pictured below to get help
contents.

Flat Type *
Systeams k

-

Axis Grouping
/0 Selectar...

Characteristics  »
Grid
Zoom J

Fropeties...

2-21
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Array Selector

If you import an LTI array into your LTI Viewer, Array Selector appears as
an option in the right-click menu. Selecting this option opens the Model
Selector for LTI Arrays, shown below.

<) Model Selector for LTI Arrays = B3
Selection Criterion Setup
Aays: I ltiarray - l

Selection Criteria

.

“u»

LI Ishowselected 'l

Show selected plot[z] ‘

QK | Eancell Help | Apply |

You can use this window to include or exclude models within the LTI array
using various criteria. The following subsections discuss the features in turn.

Arrays

Select which LTI array for applying model selection options by using the
Arrays pulldown list.

Selection Criteria

There are two selection criteria. The default, Index into Dimensions, allows
you to include or exclude specified indices of the LTI Array. Select systems from
the Selection Criteria Setup and specify whether to show or hide the systems
using the pulldown menu below the Setup lists.

2-22
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The second criterion is Bound on Characteristics. Selecting this options
causes the Model Selector to reconfigure. The reconfigured window is shown
below.

<) Model Selector for LTI Arrays = B3

Arrays: Iltiana}l vl

———  Selection Criterion Setup

I~ Peak Responze I
Settling Ti I
Selection Criteria ™ Setling Time (sec)
Index inta Dimengsi [ (i Vi ) I
Bound on Charact 3 [ Steady State I—

|

Enter a MATLAB expression uzsing '$' ta refer ta the wariable of interest [steady-state,
tige time, ... For example: $>2 & § <5. See help for more examples.

QK | Eancell Help | Apply |

Use this option to select systems for inclusion or exclusion in your LTI Viewer
based on their time response characteristics. The panel directly above the
buttons describes how to set the inclusion or exclusion criteria based on which
selection criteria you select from the reconfigured Selection Criteria Setup
panel.

AXxis Grouping
You can use Axis Grouping to change the grouping of MIMO system plots in
your LTI Viewer. This picture shows the menu options.

Flot Type 4

Systems 4

A 7 4 v MNone
{0 Select All
Characteristics Ionptutst
Grid SgtE
Zoom 4
Froperties...

There are four options:

= None — By default, there is no axis grouping. For example, if you display the
step responses for a 3-input, 2- output system, there will be six plots in your
LTI Viewer.
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= All — Groups all the responses into a single plot

= Inputs — Groups all the responses by inputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 3
plots. Each plot contains two curves.

= Outputs — Groups all the responses by outputs. For example, for a 3-input,
2-output system, selecting Inputs reconfigures the viewer so that there are 2
plots. Each plot contains three curves.

I/0O Selector

1/0 Selector opens the 1/0 Selector window, shown below.

<) 10 Selector: st._. M= E

[all] i1y Wy}

Y1) ] .

Y2 ] .

hE)] ] .
Cloge | Help |

The 1/0 Selector window contains buttons corresponding to each 1/O pair. In
this example, there are 2 inputs and 3 outputs, so there are six buttons. By
default, all the 1/O pairs are selected. If you click on a button, that 1/O pair
alone is displayed in the LTI Viewer. The other buttons automatically deselect.

To select a column of inputs, click on the input name above the column. The
names are U(1), U(2), and so on. The LTI Viewer displays the responses from
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The
names are Y(1), Y(2), and so on. The LTI Viewer displays the responses from
all the inputs to the specified output.

To reestablish the default setting, click [all]. The LTI Viewer displays all the
1/O pairs.



Status Panel

Status Panel

The Status Panel is located at the bottom of the LTI Viewer. It contains useful
information about changes you have made to the LTI Viewer.
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2 SISO Design Tool

The SISO Design Tool is a graphical-user interface (GUI) that allows you to use
root-locus, Bode diagram, and Nichols plot techniques to design compensators.
The SISO Design Tool by default displays the root locus and Bode diagrams for
your imported systems. The two are dynamically linked; for example, if you
change the gain in the root locus, it immediately affects the Bode diagrams as
well.

This tool is used extensively in Getting Started with the Control System
Toolbox. In particular, you should read Chapter 4, “Designing Compensators,”
of that book to see how to do typical design tasks with the SISO Design Tool.
This document, on the other hand, is a reference that describes all available
options for the SISO Design Tool.

Opening the SISO Design Tool
Type

sisotool

to open the SISO Design Tool.
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This picture shows the GUI and introduces some terminology.

#|51S0 Design Tool [H[=] E3
File Edit ¥iew Tools Compensator ‘Window Help < The menu bar
[Gix e & 2] m Z 2| - The tool bar
Current Compenzatar I
. =< | o The Current
| - h.i - Compensator panel
Root Locus Open-Loop Bode Diagrams — The Feedback Structure
1 20
- — Root locus plot
0.5 .
g -« Bode magnitude plot
i / Bode phase plot
1]
=0 1 ===1  Status panel
a0 ¢
-0.5
1]
-50
i 05 D 05 [ 150 e
Real Axis Freguency (radisec
Usze Import Model... off the File menu to import the plant data. ‘

The SISO Design Tool

This document describes the SISO Design Tool features left-to-right and
top-to-bottom, starting with the menu bar and ending with the status panel at

the bottom of the window.

If you want to match the SISO Design Tool pictures shown below, type

load ltiexamples

at the MATLAB prompt. This loads the same set of linear models that this
document uses as examples in the GUI. The examples all use the Gservo

system for plot displays.
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Menu Bar

Note Click on items on the menu bar pictured below to get help contents.

Most of the tasks you can do in the SISO Design Tool can be done from the
menu bar, shown below.

#|51S0 Design Tool [H[=] E3
File Edit ¥iew Tools Compensator ‘Window Help

File

Note Click on items in the File menu pictured below to get help contents.

Impaort...
Export...

Toolbox Preferences..

Print... Ctrl+F
Frintta Eigure
Close Ctrl+4y

Using the File menu, you can:

< Import and export models
=« Save and reload sessions

= Set toolbox preferences

=« Print and print to figure

= Close the SISO Design Tool

The following sections describe the File menu options in turn.



Menu Bar

Import

To import models into the SISO Design Tool, select Import from the File menu.
This opens the Import System Data window, which is shown below.

# Import System Data | ]

— Spstem Mame — Spstem Datg ——M8
c

r— Click Other to switch to an

Mame: Iuntitled
i . alternate feedback structure,
— Impart from where C, the compensator, is
5150 Models

in the feedback path.
& wiorkspacs Other... p

' MATie Sl - Eme e
£ Sirmulink,
e -k | H= I 1 [Senzor)
FAAT-File 1 amme: - | Fe |1— (Prefier)
Brawse | _>| C= |1 [Compenszator)
ak. | Cancel | Help |

The Import System Data Window

The following sections discuss the System Name, Import from, and System
Data panels of the Import System Data window.

System Name. Use the Name field to assign a name to the imported system. The
default name is untitled.

Import From. To import models, select them from the SISO Models list and use
the right arrow buttons to place the models in G (plant), H (sensor), F
(prefilter), or C (compensator). You can import models from:

< The MATLAB Workspace

= A MAT-file

= Simulink (.md1 files)

System Data. The System Data panel performs two functions:

= Feedback structure specification — Click Other to toggle between placing
the compensator in the forward and feedback paths

= Model import specification — You can import models for the plant (G),
compensator (C), prefilter (F), and/or sensor (H). To import a model, select it
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from the SISO model list and click the right-arrow button next to the desired
model field.

Export

Selecting Export from the File menu opens the SISO Tool Export Window.
J SIS0 Tool Export [H[=] E3
— Select Models to Export

Componernt Moclel Export Az | =] Export to Workspace |
Plant & [current) GEervo
Expoart to Disk
Sensor H [current) urtitledH &I

Prefitter F [current) urtitledF
Compensator © | {current) urtithedc Cancel |
Open Loop CGH olsys
Clozed Loop FCGH+CGH) T_r2y [ LI
FCA1+CEH) T_ru
1 +CGH) S_out (sensitivity)
G +CEH) S_in

State Space clays

The SISO Tool Export Window

With this window, you can:

< Export models to the MATLAB Workspace or to a disk
= Rename models when exporting

= Save variations on models, including open and closed loop models, sensitivity
transfer functions, and state-space representations

Exporting to the Workspace. To export models to the MATLAB workspace, follow
these steps:

1 Select the model you want to export from the Component list by left-clicking
the model name. To select more than one model, hold down the Shift key if
they are adjacent on the list. If you want to save nonadjacent models, hold
down the Ctrl key while selecting the models.

2 For each model you want to save, specify a name in the model’s cell in the
Export As list. A default name exists if you do not want to assign a new
name.



Menu Bar

3 Press Export to Workspace.

Exporting to a MAT-file. If you want to save your models in a MAT-file, follow
steps 1 and 2 and press Export to Disk, which opens this window.

Export to Disk EHE

Save jn: Iacontrol j gl =

File name: IGservo.mat Save I
Save as ype: IFigures [*fig) j Cancel |

Choose where you want to save the file in the Save in field and specify the
name you want for your MAT-file in the File name field. Press Save to save the
file.

Save Session

You can quit MATLAB and later restore the SISO Design Tool to the state you
left it in by saving the session. Select Save Session from the File menu. This
opens the Save Session window.

Load Session EHE

Loak jn: I = Temp j gl E.-..

session_1.mat
sEs3i0n_2.mat
session_3.mat

File name: Isession_4 Open I
Files of lpe: IMAT-fiIes [*.mat] j Cancel |

To save a session, specify a file name and press Save. The current state and
configuration of your SISO Design Tool are saved as a MAT-file. To load a
saved session, see the “Load Session” on page 2-8 section.
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Load Session

To load a saved SISO Design Tool session, select Load Session from the File
menu. This opens the Load Session menu.

Load Session EHE

Lok in: I — Temp j gl

session:S.mat

File name: Isession_‘l .mat Open I
Files of lpe: IMAT-fiIes [*.mat] j Cancel |

Sessions are saved as MAT-files. Select the session you want to load from the

list, and press Open. See “Save Session” on page 2-7 for information on saving
SISO Design Tool sessions.

Toolbox Preferences

Select Toolbox Preferences from the File menu to open the Control System
Toolbox Preferences menu.
unts | style | Cheracteristis | S50 Tool |

Units

Frequency in Irad.l’sec: ;I u=ing IIogscaIe ;I

Magnitude in oB -

Phaze in Idegrees - I

Ok | Cancel | Help |

The Control System Toolbox Preferences Window

For a discussion of this window'’s features, see “Setting Toolbox Preferences”
online in the Control System Toolbox documentation.
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Print
Use Print to send a picture of the SISO Design Tool to your printer.

Print to Figure
Print to Figure opens a separate figure window containing the design views

in your current SISO Design Tool.

Close
Use Close to close the SISO Design Tool.

Edit

Note Click on items in the Edit menu pictured below to get help contents.

WhdE (EfH
Eeda Bt
Root Locus 4
Bode »
SIS0 Tool Preferences..

Undo and Redo

Use Undo and Redo to go back and forward in the design steps. Note that both
Undo and Redo menus change when the task you have just performed
changes. For example, if you change the compensator gain, the menu items
become Undo Gain and Redo Gain.

Root Locus and Bode Diagrams

The Root Locus and Bode Diagrams menu options replicate the functionality
of the right-click menus. If you open a Nichols plot or a Prefilter Bode diagram,
the Edit menu replicates the right-click menus for these features as well. See
“Right-Click Menus” on page 2-27 for information about the features available
from the right-click menus.
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SISO Tool Preferences

SISO Tool Preferences opens the SISO Tool Preferences editor. This picture
shows the open window.

J SIS0 Tool Preferences =] 3
Units | style | oOptions |

Units

Frequency in Irad.l’sec: ;I u=ing IIogscaIe ;I

Magnitude in oB -

Phase in Idegrees - I

Ok | Cancel | Help | Apply |

The SISO Tool Preferences Editor

You can use this window to do the following:

= Change units

< Add plot grids, change font styles for titles, labels, etc., and change axes
foreground colors

= Change the compensator format
= Show or hide system poles and zeros in Bode diagrams

For a complete description of properties and preferences, see “SISO Design
Preferences” online in the Control System Toolbox documentation.

View

Note Click on items in the View menu pictured below to get help contents.
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v Root Locus
¥ Bode Diagrams

Systermn Data
Closed-Loop Poles
Design Histary

Root Locus and Bode Diagrams

By default, the SISO Design Tool displays the root locus and Bode magnitude
and phase diagrams. You can deselect either to show only the root locus or the
Bode diagram.

Open-Loop Nichols

Select Open-Loop Nichols from the View to add an interactive open-loop
Nichols plot to the SISO Design Tool. All the options available from the root
locus and Bode diagrams for compensator design are also available from the
Nichols plot.

For a worked example, see “Nichols Plot Design” in Getting Started with the
Control System Toolbox.

Prefilter Bode

Select Prefilter Bode to open a Bode diagram for the prefilter (F). You can
either edit a prefilter that you imported into your design or create a new
prefilter. The SISO Design Tool provides right-click menus and interactive
graphics that facilitate prefilter design; the features are the same as those
available from the Bode diagrams for the compensator (C).

For an example of prefilter design, see “Adding a Prefilter” in Getting Started
with the Control System Toolbox.
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System Data

To see information about your plant and sensor models, select System Data
under View. This opens the window shown below.

| #|System Data [ ()]
| System Name: I vz dc |
Plant G: I vz dc
Zeros: Poles:
<Mone: -10
-4.03
Show Transfer Function |
— Press either button to see the transfer function of
Sensor H: [ unted the particular model.
Zeros: Poles:
<Mone: <Mone:
Show Transfer Function |
: . =<
Prefilter F: I untitledF
Zeros: Poles:
<Mone: <Mone:

The System Data Window

The System Data window displays basic information about the models you've
imported.

Closed-Loop Poles
Select Closed-Loop Poles from View to open the Closed-Loop Pole Viewer.

<) Closed-Loop Fole Viewer [ ()=
~Cloged-Loop Poles
Paole Walue Dramping Frequency o

-500 1 00

-250 1 230

-0.00356 1 0.00356

-20 £ 285 0.0667 300

=
Cloze |

This window displays all the closed-loop pole values of the current system, and
their damping and frequency.
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Design History

Selecting Design History from the View opens the Design History window,
which displays all the actions you've performed during a design session. You
can save the history to an ASCII flat text file.

Compensators

Note Click on items in the Compensators menu pictured below to get help
contents.

Format...
Edit...

Store
Betriewve...
Clear

Format

Selecting Format under Compensators activates the SISO Tool Preferences
editor with the Options page open. This figure shows the Options page.

<} SIS0 Tool Preferences =] 3
Unts | Style  Options | Line colars |

C itor Format

& Time-constant: DG x 01+ Tz1 =301 + Tpd =)
 Zerolpoledgain: K x (s +Z1)i(s + p1)

Bode Options

’V |7 Showy plantizensor poles and zeros

Ok | Cancel | Help | Apply |

Use the radio buttons to toggle between time constant, natural frequency, and
zero/pole/gain compensator formats.
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By default, the SISO Design Tool shows the plant poles and zeros on Bode
diagrams as red x’s and o's, respectively. Uncheck the Show plant/sensor poles
and zeros box to hide the plant and sensor poles and zeros.

For a general description of the SISO Tool Preferences editor, see “SISO Design
Tool Preferences” online in the Control System Toolbox documentation.

Edit
Choose C or F from Edit under the Compensators menu to open the Edit

Compensator window for the compensator (C) or the prefilter (F), respectively.
For example, this figure shows the selection of the compensator.

Format... |

m[

D

Store.. ik
Betriewve...
Clear 4

<) Edit Compensator = B3
Gain: I 1 Format: IZero.-"F'ole Location j

Zeros Poles
Delete Fieal Imaginary Delete Fieal Imaginary
[0 [ S ED i
Add Real Zero | Add Complex Zero | Add Real Pole | Add Complex Pole |
I 1 1 1

The Edit Compensator C Window

If you had chosen F, the Edit Compensator F window would have opened.
Both windows have the same functionality.

You can use this window to inspect pole, zero, and gain data, and to edit this
data using your keyboard (as opposed to graphically editing the compensator
data). You have the following choices available from this window:

=« “Adjusting the Gain”

= “Changing the Format” for specifying pole and zero locations

= “Adding Poles and Zeros”

= “Editing Poles and Zeros”

= “Deleting Poles and Zeros”
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In the following sections, the descriptions of these tasks apply equally to the
prefilter (F) and the compensator (C).

Adjusting the Gain. To change the compensator gain, enter the new value in the
Gain field.

Changing the Format. You can see the poles and zeros either as complex numbers
(Zero/Pole Location) or as damping ratio and natural frequency pairs
(Damping/Natural Frequency). The default is Zero/Pole Location, which means
that the window shows the numerical values. Use the Format menu to toggle
between the two formats.

Adding Poles and Zeros. To add real poles to your compensators, press Add Real
Pole. This action opens an empty field in the Poles panel. Specify the pole value
in the field. To add a pair of complex poles, press Add Complex Pole. In this

case, two fields appear: one for the real and another for the imaginary part of
the poles. Note that you must specify the a negative sign for the real part of the
pole if you want to specify a pair left-plane poles, but that the imaginary part
is defined as +/-, so you do not have to specify the sign for that part.

If you specify the damping/natural frequency format, there is no distinction
between the real and complex pole specifications. Pressing either button opens
two fields: one for specifying the damping and another for the natural
frequency. If you pressed Add Real Pole, you only need to specify the natural
frequency since the Edit Compensator window automatically places a 1 in the
damping field in this case.

Adding zeros is exactly the same; press Add Real Zero or Add Complex Zero
and proceed as above.

Editing Poles and Zeros. You can change the pole locations or damping ratios/
natural frequencies for existing poles and zeros by specifying new values in the
appropriate fields. The SISO Design Tool automatically updates to reflect the
changes.

Deleting Poles and Zeros. Whenever you add poles or zeros using the Edit
Compensator window, a delete box appears to the left of the fields used to
specify the pole/zero values. Check this box anytime you want to delete the pole
or zero specified next to it.
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Store

Use Store to open the Store Compensator Design window, shown in the
figure below.

<) Store Compensator E

Stare ast

| urtitiedC_1

()8 | Eancell

To store your prefilter and compensator design, specify the name you want to
store the design under and press OK.

Retrieve
Retrieve opens the Compensator Designs window, shown in the figure below.

<) Compensator Designs =] 3

[Mame Oroer Sample Time | =

Retrigve |
Delete |

Help |

Cancel |

=

This window lists all the compensator designs you have stored during a SISO
Design Tool session. It also lists the orders of your compensator (C) and
prefilter (F) pairs, and their sample times (0 means that they're continuous).
To retrieve a stored design, left-click on the design name to select it and press
Retrieve. To delete a design, select it and press the Delete button.
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Clear

Select Clear to eliminate prefilter and compensator dynamics and set the gain
to 1.

Format...
Edit 4

Store..
Betriewve...

You can clear:

= C and F (the compensator and prefilter both)
< Conly
= Fonly

Tools

Note Click on items in the Tools menu pictured below to get help contents.

Loop Besponses...
Continuous/Discrete Conversions...
Draw Sirmulink Diagrarm...

Loop Responses
Selecting Loop Responses opens a submenu that lists response plot options.

Loop B Closed-Loop Step
Continuous/Discrete Conversions... Contral Signal Step
Draw Sirmulink Diagrarm... Closed-Loop Bode

Compensator Bode
Open-Loop Myquist

Cther...

Each of the top group of items opens an LTI Viewer that is dynamically linked
to your SISO Design Tool. You have the following response plot choices:
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=« Closed-Loop Step — The closed-loop step response of your system

=« Control Signal Step — The open-loop step response of your system

=« Closed-Loop Bode — The closed-loop Bode diagram for your system

< Compensator Bode — The open-loop Bode diagram for your compensator
= Open-Loop Nyquist — The open-loop Nyquist plot for your system

When you make changes to the design in the SISO Design Tool, the response

plots in the LTI Viewer automatically change to reflect the new design’s
responses.

For examples that use LTI Viewers linked with the SISO Design Tool, see
“Designing Compensators” in Getting Started with the Control System Toolbox.
See the “LTI Viewer” on page 2-1 for a complete description of all the features
of the LTI Viewer.

Customizing Loop Responses. |If you choose Other from Loop Responses, the
Response Plot Setup window opens.

<) Response FPlot Setup [ ()=

Loop Transfer: L = CGH

r F p [ G ¥ )
a * Sensiiviy: § = 1/[1+L) Loop diagram
H

—Plots ————— — Contents of Plot 1
Clozed-Loop: Open-Loop:
V rtoy [FCGS) [T Loop Transfer L
I rtou (FCS) ™ FlantG Plots and Contents of Plots
™ dytoy (5] ™ Compensator C

[T dutoy [GS] ™ SensorH
Changs to: |Step v[ [T ntoy [CGS) I Prefilter F

QK | Cancel | Help

Response Plot Setup Window

The following sections describe the main components of the Response Plot
Setup window.

Loop diagram. At the top of the Response Plot Setup window is a loop diagram.
This block diagram shows the feedback structure of your system. The diagram
in “Response Plot Setup Window” on page 2-18 shows the default
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configuration; the compensator is in the forward path. If your system has the
compensator in the feedback path, this window correctly displays the alternate
feedback structure.

Note that window lists two transfer functions next to the loop diagram:

= Loop transfer — This is defined as the compensator (C), the plant (G), and
the sensor (H) multiplied together (CGH). If you haven't defined a sensor, its
default value is 1.

= Sensitivity function — This is defined as 1TlL , Where L is the loop transfer
function.

Some of the open- and closed-loop responses use these definitions. See
“Contents of plots” on page 2-19 for more information.

Plots. You can have up to six plots in one LTI Viewer. By default, the Response
Plot Setup window specifies one step response plot. To add a plot, start by
selecting “2. None” from the list of plots and then specify a new plot type in the
Change to field. You can choose any of the plots available in the LTI Viewer.
Select “None” to remove a plot.

Contents of plots. Once you have selected a plot type, you can include several
open- and closed-loop transfer functions to be displayed in that plot. You can
plot open-loop responses for each of the components of your system, including
your compensator (C), plant (G), prefilter (F), or sensor (H). In addition, loop
transfer and sensitivity transfer functions are available. Their definitions are
listed in the Response Plot Setup window.

See the block diagram in “Response Plot Setup Window” on page 2-18 for
definitions of the input/output points for closed-loop responses.

Continuous/Discrete Conversions

Selecting Continuous/Discrete Conversions opens the Continuous/Discrete
Conversions window, which you can use to convert between continuous to
discrete designs.You can select the following:

=« Conversion method

= Sample time

= Critical frequency (where applicable)
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This picture shows the window.
<) Continuous/Discrete Conv... [ME E

— Corveert to

5 Cortinuous bie

& Discrete time
Sample time [zec): I‘I

— Conversion Method

QK | Eancell Help | Apply |

The Continuous/Discrete Conversion Window

Conversion domain. If your current model is continuous-time, the upper panel of
the Continuous/Discrete Conversion window automatically selects the
Discrete time radio button. If your model is in discrete-time, see
“Discrete-time domain” on page 2-21.

To convert to discrete time, you must specify a positive number for the sample
time in the Sample time (sec) field.

You can perform continuous to discrete conversions on any of the components
of your model: the plant (G), the compensator (C), the prefilter (F), or the sensor
(H). Select the method you want to use from the menus next to the model
elements.

Conversion method. The following are the available continuous-to-discrete
conversion methods:

= Zero-order hold

= First-order hold

= Tustin

= Tustin with prewarping

< Matched pole/zero
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If you choose Tustin with prewarping, you must specify the critical frequency
in rad/sec.

Discrete-time domain. If you currently have a discrete-time system, the
Continuous/Discrete Conversion window looks like this figure.

<) Continuous/Discrete Conv... [ME E

— Corveert to

& Continuous time

" Discrete time with new sample time
Sample tme [sec]; I 0.0

— Conversion Method

QK | Eancell Help | Apply |

You can either change the sample time of the discrete system (resampling) or
do a discrete-to-continuous conversion.

To resample your system, select Discrete time with new sample time and
specify the new sample time in the Sample time (sec) field. The sample time
must be a positive number.

To convert from discrete-time to continuous-time, you have the following
options for the conversion method:

<« Zero-order hold

=« Tustin

= Tustin with prewarping

= Matched pole/zero

Again, if you choose Tustin with prewarping, you must specify the critical
frequency.
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Draw Simulink Diagram

Note You must have a license for Simulink to use this feature. If you do not
have Simulink, you will not see this option under the Tools menu.

Select Draw Simulink Diagram to draw a block diagram of your system
(plant, compensator, prefilter, and sensor). For the DC motor example
described in Getting Started with the Control System Toolbox, this picture is
the result.

Eluntitled = =] 3

File Edit ¥iew Simulation Format Tools Help

D& =R o RES| > = [nm M|

untitledC H sys_de }—4@

Compensator Flant Output

untitledF

Input Pre-filter

Sum

untitledH

Senzor ynamics

Ready R0 |odedf i

Window

The Window menu item lists all window open in MATLAB. The first item is
always the MATLAB Command Window. After that, windows you have opened
are listed in the order in which you invoked them. Any window you select from
the list become the active window.
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Help

Help brings you to various places in the Control System Toolbox help system.
This figure shows the menu.

Main Help Ctrl+H

Edit Compensator Window
Continuous/Discrete Conversions

Design Constraints
Freferences

Each topics takes you to brief discussions of basic information about the SISO
Design Tool and the Control System Toolbox:

= SISO Design Tool Help — An overview of the SISO Design Tool

= Control System Toolbox Help — A roadmap for the Control System Toolbox
help

< What's This? — Activates the “What's This?” cursor, which appears as a
question mark. Click in various regions of the SISO Design Tool to see brief
descriptions of the tool's features.

= Importing/Exporting Models — How to import models into the SISO
Design Tool and how to export completed designs

= Tuning Compensators — Basic information about adjusting gains and
adding dynamics to your prefilter (F) and compensator (C)

=« Viewing Loop Responses — How to open an LTI Viewer containing loop
responses for your system. Many response types are available.

= Viewing System Data — How to see information about your model

=« Storing/Retrieving Designs — How to store and retrieve designed systems

= Customizing the SISO Tool — How to open the SISO Tool Preferences
editor, which allows you to customize plot displays in the tool

= Demos — A link to the Control System Toolbox demos

= About the Control System Toolbox — The version number of your Control
System Toolbox
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Toolbar

The toolbar performs the following operations:

< Add and delete real and complex poles and zeros
= Zoom in and out
= Invoke the SISO Design Tool's context-sensitive help

This picture shows the toolbar.

e 22wz XN

Return to default modeJ \; Activate context-
Add a real pole sensitive help
Add a real zero Zoom out
Add a complex pole Zoomin Y
Add a complex zero Zoom in X

Zoom in X-Y

Delete poles and zeros

Options Available from the Toolbar

You can use the tool tips feature to find out what a particular icon does. Just
place your mouse over the icon in question, and you will see a brief description
of what it does.

Once you've selected an icon, your mouse stays in that mode until you press the
icon again.

You can reach all of these options from two other places:

=« Right-click menus

= From Root Locus, Open-Loop Bode, Open-Loop Nichols, or Prefilter
Bode under Edit in the menu bar (these replicate the right-click menus for
each of these views). Note that the Edit menu adjusts the options to match
the views that you have open. For example, if you have the root locus open
alone, you will only see the Root Locus option.
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Current Compensator

The Current Compensator panel shows the structure of the compensator you
are designing. The default compensator structure is a unity gain with no
dynamics. Once you add poles and/or zeros, the Current Compensator panel
displays the compensator in zero/pole/gain format. This picture shows a
Current Compensator panel with Gcl1 entered as the compensator.

Current Compensatar

1+ 05z [1+0.0133: + 013372
o [T x o (1090000133 01332

[1+0.4425 + 0.123:72) [1 + 0.071 3z + 0.136:72)

You can change the gain of the compensator by changing the number in the text
field. If you want to change the poles and zeros of the compensator, click on the
window to open the Edit Compensator window.

If you have a discrete time system, the Current Compensator panel display
changes. This figure shows the Current Compensator panel with Gc11
discretized with a time step of 0.001 second.

Current Compenzatar

Ciz)= [ - (1 + 0.5w) [1 + 0074w + (0.37w]"2) 2

1+ D.ddw + [0.35w]72) (1 + 0.072w + [0.37w]"2) Tz

Here, w is the z-transform shifted by -1 and scaled by the sample time; see the
definition to the right of the transfer function. This is done to simplify the
representation; note that the coefficients are a close match to those shown for
the continuous time representation.

If you see either NumC or DenC in place of a polynomial, it means that the
numerator or denominator of the transfer function is too large to fit in the
panel. Try stretching the SISO Design Tool horizontally to see the complete
transfer function.
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Feedback Structure

To the right of the Current Compensator panel is the Feedback Structure
panel, which is shown in its default configuration below.

The Feedback Structure Panel

To switch to the alternate feedback structure, press the FS button. This figure
shows the new feedback structure.

Alternate Feedback Structure with the Compensator in the Feedback Loop

Pressing the +/- button toggles between positive and negative feedback signs.
Negative feedback is the default.

Additional Features

Left-click on the G or H boxes to open the System Data window. Click on F or
C to open the Edit Compensator window for the prefilter or compensator,
respectively.
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Right-Click Menus

The SISO Design Tool provides right-click menus for all the views available in
the tool. These views include the root-locus, open-loop Bode diagrams, Nichols
plot, and the prefilter Bode diagrams. The menu items in each of these views
are identical. The design constraints, however, differ, depending on which view
you are accessing the menus from.

You can use the right-click menu to design a compensator by adding poles,
zeros, lead, lag, and notch filters. In addition, you can use this menu to add
grids and zoom in on selected regions. Also, you can open each view’s Property
Editor to customize units and other elements of the display.

Note Click on items in the right-click menu pictured below to get help
contents.

Add 4
Delete PolefZero
Edit Compensatar...

Design Constraints...
Girid
Zoom 4

Froperties...
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Add

The Add menu options give you the ability to add dynamics to your
compensator design, including poles, zeros, lead and lag networks, and notch
filters. This figure shows the Add submenu.

Add ld FealPole
Delete PolefZero Complex Paole
Edit Compensatar... Integratar
Design Constraints... Feal Zero
Grid Complex Zero
Zoom +  Differentiator
Froperties... Lead

Lag

Motch

The following pole/zero configurations are available:

= Real Pole

< Complex Pole
= |ntegrator

= Real Zero

< Complex Zero
= Differentiator
= |Lead

= Lag

< Notch

In all but the integrator and differentiator, once you select the configuration,
your cursor changes to an ‘x’. To add the item to your compensator design, place
the x at the desired location on the plot and left-click your mouse. You will see
the root locus design automatically update to include the new compensator
dynamics.

The notch filter has three adjustable parameters. For a discussion about how
to add and adjust notch filters, see “Adding a Notch Filter” in Getting Started
with the Control System Toolbox.

Example: Adding a Complex Pair of Poles

This example shows you how to add a complex pair of poles to the open-loop
Bode diagram. First, type
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load ltiexamples
sisotool('bode’',sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor
example loaded and the open-loop Bode diagram displayed.

<) 5150 Design for System sys_dc [H[=] E3
File Edit ¥iew Compensators Tools Window Help

iy x e % & tim 2 X

Current Compenzatar
]
N -=
’t[S] +- FS

Open-Loop Bode Editor (2
H T

After selecting Add
Pole/Zero and then
Complex Pole from the
right-click menu, use
the mouse cursor to
specify the frequency of
the complex pole pair.

Magnitucke (B

FPhase (chg)

180 : i e
L) L)
Frequency (rackizec)

Left-click where pou want to add this pole.

To add a complex pair of poles:
1 Select Add Pole/Zero and then Complex Pole from the right-click menu

2 Place the mouse cursor where you want the pole to be located

3 Left-click to add the pole
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Your SISO Design Tool should look similar to this.

<) 5150 Design for System sys_dc [H[=] E3
File Edit ¥iew Compensators Tools Window Help
i x 0 3 2 |tim T XN
Current Compenzatar
1 p[o]
T o L -=
’7[3] Y0020 - 0029 o ks

Open-Loop Bode Editor (2

This ‘x” represents the
added poles.

Magnitucke (B
8

LG 49508
Freq: 18.2 rackisec L ' oo
Stable loop R [ A R

FPhase (chg)

Fraq: Mah

10°
Frequency (rackizec)

‘ Added complex pair of poles to Cls] at e =-49.2 £ i

In the case of Bode diagrams, when you place a complex pole, the default
damping value is 1, which means you have a double real pole. To change the
damping, grab the red ‘X’ by left-clicking on it and drag it upward with your
mouse. You will see damping ratio change in the Status Panel at the bottom of
the SISO Design Tool.

Delete Pole/Zero

Select Delete Pole/Zero to delete poles and zeros from your compensator
design. When you make this selection, your cursor changes to an eraser. Place
the eraser over the pole or zero you want to delete and left-click your mouse.

Note the following:
= You can only delete compensator poles and zeros. Plant (G in the feedback
structure panel) poles and zeros cannot be altered.

= If you delete one of a pair of poles or zeros, the other member of the pair is
also removed.
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Edit Compensator

Edit Compensator opens the Edit Compensator C or F window, depending on
which compensator you're working with. You can use this window to adjust the
compensator gain and add or remove compensator poles and zeros from your
compensator (C) or prefilter (F) design. See “Edit” on page 2-14 for a discussion
of this window.

Show

Use Show to select/deselect the display of characteristics relevant to which
view you are working with. This figure displays the Show submenu for the
open-loop Bode diagram.

Add 4
Delete PolefZero
Edit Compensatar...

I - oo
v
Grid V:thabs_f o
Zoom o) ability Marging

Froperties...

For this particular view, the options available are magnitude, phase, and
stability margins. Selecting any of these toggles between showing and hiding
the feature. A check next to the feature means that it is currently displayed on
the Bode diagram plots. Although the characteristics are different for each
view in the SISO Design Tool, they all toggle on and off in the same manner.

Design Constraints

When designing compensators, it is common to have design specifications that
call for specific settling times, damping ratios, and other characteristics. The
SISO Design Tool provides design constraints that can help make the task of
meeting design specifications easier. The New Constraint window, which

allows you to create design constraints, automatically changes to reflect which
constraints are available for the view in which you are working. Select Design

2-31



2 SISO Design Tool

2-32

Constraints and then New to open the New Constraint window, which is
shown below.

<) Design Constraints = B3
Add constraints for:
™ Sefttling Time = l—
™ Peak Overshoat (%) = l—
" Damping Ratio = l—
™ Matural Frequency = l—

Since each view has a different set of constraint types, click on the following
links to go to the appropriate descriptions:

<= Root locus

= Open-loop Bode diagram and prefilter Bode diagram (same)

< Nichols plot

Design Constraints for the Root Locus
For the root locus, you have the following constraint types:

= “Settling Time”

= “Percent Overshoot”
= “Damping Ratio”

<« “Natural Frequency”

Use the Constraint Type menu to select a design constraint. In each case, to
specify the constraint, enter the value in the Constraint Parameters panel. You
can select any or all of them, or have more than one of each.

Settling Time. If you specify a settling time in the continuous-time root locus, a
vertical line appears on the root locus plot at the pole locations associated with
the value provided (using a first-order approximation). In the discrete-time
case, the constraint is a curved line.

Percent Overshoot. Specifying percent overshoot in the continuous-time root
locus causes two rays, starting at the root locus origin, to appear. These rays
are the locus of poles associated with the percent value (using a second-order
approximation). In the discrete-time case, In the discrete-time case, the
constraint appears as two curves originating at (1,0) and meeting on the real
axis in the left-hand plane.
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Note that the percent overshoot (p.o.) constraint can be expressed in terms of
the damping ratio, as in this equation.

p.0. = 100e ™/ V1 3

where C is the damping ratio.

Damping Ratio. Specifying a damping ratio in the continuous-time root locus
causes two rays, starting at the root locus origin, to appear. These rays are the
locus of poles associated with the damping ratio. In the discrete-time case, the
constraint appears as curved lines originating at (1,0) and meeting on the real
axis in the left-hand plane.

Natural Frequency. If you specify a natural frequency, a semicircle centered

around the root locus origin appears. The radius equals the natural frequency.

Example: Adding Damping Ratio Constraints
This example add a damping ratio of 0.707 inequality constraint. First, type

load ltiexamples
sisotool(sys_dc)

at the MATLAB prompt. This opens the SISO Design Tool with the DC motor
example imported.

From the root locus right-click menu, select Design Constraints and then New
to open the New Constraint window. To add the constraint, select Damping
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Ratio as the constraint type. The default damping ratio is 0.707. The SISO
Design Tool should now look similar to this figure.

<) SIS0 Design Tool [H[=] E3
File Edit ¥iew Compensators Tools Window Help
i x 0 3 2 |tim T XN
Current Compenzatar
&
Cisl = I1 ‘ -
’7 +- FS
Reoot Locus Editer (C) Open-Loop Bode Editor (2
— ; -5
Eales]
150
-0
-280
)
1 120 1
- L L H L ~540 n
ity ey £ @ 500 10' 10° 10° 10°
Real Axis Frequency (racizec)

Imported model data. Right-click on the plots for design options. ‘

Damping Ratio Constraints in the Root Locus
The two rays centered at (0,0) represent the damping ratio constraint. The

dark edge is the region boundary, and the shaded area outlines the exclusion
region. This figure explains what this means for this constraint.

Damping
( <0.707

Damping
¢ >0.707
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You can, for example, use this design constraint to ensure that the closed-loop
poles, represented by the red squares, have some minimum damping.

Design Constraints for Open-Loop and Prefilter Bode Diagrams

For both the open-loop and prefilter Bode diagrams, you have the following
options:

= “Upper Gain Limit”
« “Lower Gain Limit”

Specifying any of these constraint types causes lines to appear in the Bode
magnitude curve. To specify an upper or lower gain limit, enter the frequency
range, the magnitude limit, and/or the slope in decibels per decade, in the
appropriate fields of the Constraint Parameters panel. You can have as many
gain limit constraints as you like in your Bode magnitude plots.

Upper Gain Limit. You can specify an upper gain limit, which appears as a
straight line on the Bode magnitude curve. You must select frequency limits,
the upper gain limit in decibels, and the slope in dB/decade.

Lower Gain Limit. Specify the lower gain limit in the same fashion as the upper
gain limit.

Example: Adding Upper Gain Limits

This example shows you how to add two upper gain limit constraints to the
open-loop Bode diagram. First, type

load ltiexamples
sisotool('bode' ,Gservo)
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at the MATLAB prompt. This opens the SISO Design Tool with the
servomechanism model loaded. Use the right-click menu to add a grid.

<) 5150 Design for System Gservo M= B3
File Edit ¥iew Compensators Tools Window Help

i xo ¥ & s|timz XN

Current Compenzatar
]
| =
’t[S] +- FS

Open-Loop Bode Editor (2

20 T I R A A

Magnitucke (B
=3
T

) R
G 328 B Vo
~80 | Fren: 279 radizec - -
Stable kop

FPhase (chg)

SET0 I S B

gl Fres tioredlsee | ii]. iolliiil SRS I
10 10 10 10
Frequency (rackizec)

‘ Right-click on the plats for more design options.

First, add an upper gain limit constraint of 0 dB from 10 rad/sec to 100 rad/sec.
This figure shows the New Constraint editor with the correct parameters.

<) New Constraint HE B3

Constraint Type: |Upper Grain Limit =]

Constraint parameters

Freguency: |1 u] ta |1 oo
Magnitucde: ID ta ID
Slope (dBidecade]): ID

Ok | Cancel | Help
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Your SISO Design Tool should now look like this.

IS[=] E3

<) 5150 Design for System Gservo

R

Window Hel

Tools

pensators

Yiew  Com

Edit

File

Current Compenzatar

’t[S]

Open-Loop Bode Editor (2

Frequency (rackizec)

Upper gain limit with glope 0 dB /decade.

Left-click and drag to move this gain constraint.
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Now, to constraint the roll off, open the New Constraint editor and add an

upper gain limit from 100 rad/sec to 1000 rad/sec with a slope of -20 db/decade.
This figure shows the result.

<) 5150 Design for System Gservo M= B3
File Edit ¥iew Compensators Tools Window Help
i x 0 3 2 |tim T XN
Current Compenzatar
&
Clzl= |1 ‘ o
F | s

Open-Loop Bode Editor (2

Magnitucke (B

G 22808 Lo
80| Freq: 273 radises --+- BT BEEY EEE SR S S
St oo e

10°

Frequency (rackizec)

The gain constraint new location is from 97,2 to 963 rad/zec
with a zlope of -40 dB /decade.

With these constraints in place, you can see how much you can increase the
compensator gain and still meet design specifications.

Note that you can change the constraints by moving them with your mouse. See
“Editing Constraints” on page 2-41 for more information.

Design Constraints for Open-Loop Nichols Plots

For open-loop Nichols plots, you have the following design constraint options:
=« “Phase Margin”

=« “Gain Margin”

<« “Closed-Loop Peak Gain”

Specifying any of these constraint types causes lines or curves to appear in the
Nichols plot. In each case, to specify the constraint, enter the value in the
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Constraint Parameters panel. You can select any or all of them, or have more
than one of each.

Phase Margin. Specify a minimum phase amount at a given location. For
example, you can require a minimum of 30 degrees at the -180 degree
crossover. The phase margin specified should be a number greater than 0. The
location must be a -180 plus a multiple of 360 degrees. If you enter an invalid
location point, the closed valid location is selected.

Gain Margin. Specify a gain margin at a given location. For example, you can
require a minimum of 20 dB at the -180 degree crossover. The location must be
-180 plus a multiple of 360 degrees. If you enter an invalid location point, the
closed valid location is selected.

Closed-Loop Peak Gain. Specify a peak closed-loop gain at a given location. The
specified value can be positive or negative in dB. The constraint follows the
curves of the Nichols plot grid, so it is recommended that you have the grid on
when using this feature.

Example: Adding a Closed-Loop Peak Gain Constraint
This example shows how to add a closed-loop peak gain constraint to the
Nichols plot. First, type

load ltiexamples
sisotool('nichols',Gservo)
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This opens the SISO Design Tool with Gservo imported as the plant. Use the
right-click menu to add a grid, as this figure shows.

<) 5150 Design for System Gservo M= B3
File Edit ¥iew Compensators Tools Window Help

[ x 0 ¥ 2 |im I XN
Current Compenzatar
’t{s]: |1

Open-Loop Michels Editer (2
T

Open-Locp Gain (B)

G 328 0B @ 279 radisec
40 b P 895 deg @ 1.75 radlisec
Stable kop

LS . La

r------ Fommee e e T--

L I 1 : i : 1
=25 -2 -225 -180 =125
Open-Leop Phase (ded)

Right-click on the plats for more design options.

To add closed-loop peak gain of 1 dB at -180 degrees, open the New Constraint
editor and select Closed-Loop Peak Gain from the pull-down menu. Set the
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peak gain field to 1 dB. The figure shows the resulting design constraint; use
Zoom X-Y to zoom in on the plot for clarity.

<) 5150 Design for System Gservo [H[=] E3
File Edit ¥iew Compensators Tools Window Help
i x 0 3 2 |tim T XN
Current Compenzatar
&
Clzl= |1 ‘ o
F | s

Open-Loop Michels Editer (2
T

Open-Locp Gain (B)

G 3280R @ 279 radiser |
[P 82 50 @& 1.78 radl'sec——____‘

b Stable kop \
. | : | L
-225 -180 =
Open-Leop Phase (ded)

Zoom completed.
FRight-click on plats for more design options.

As long as the curve is outside of the grey region, the closed-loop gain is
guaranteed to be less than 1 dB. Note that this is equivalent, up to second
order, to specifying the peak overshoot in the time domain. In this case, a1 dB
closed-loop peak gain corresponds to an overshoot of 15%.

Editing Constraints

To edit an existing constraint, left-click on the constraint itself to select it. Two
black squares appear on the constraint when it is selected, and your mouse

cursor turns into a large black cross (+). In general, there are two ways to
adjust a constraint:

= Click on the constraint and drag it. This does not change the shape of the
constraint. That is, the adjustment is strictly a translation of the constraint.

= Grab a black square and drag it. In this case, you can rotate, expand, and/or
contract the constraint.
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For example, in Bode diagrams you can move an upper gain limit by clicking
on it and moving it anywhere in the plot region. As long as you haven't grabbed
a black square, the length and slope of the gain limit will not change as you
move the line. On the other hand, you can change the slope of the upper gain
limit by grabbing one of the black squares and rotating the line. In all cases,
the Status panel at the bottom of the SISO Design Tool displays the constraint
values as they change.

This figure shows the process of editing an upper gain limit in the open-loop
Bode diagram.

<) SIS0 Design Tool =] &3
File Edit ¥iew Compensators Tools Window Help
i x 0 3 2 |tim T XN
Current Compenzatar
{C |
Cis]= | 1.6 ‘ -
F ' .
. Open-Loop Bede Edtor (C) Rotate the black square
' ' ' to change the slope of the
D—— s .
& upper limit constraint.
E’ o You can also stretch or
g T shrink the constraint by
2 dragging the black
~80 |+ Freg: 279 racl;
S bon square.
_100 IR R | I I IR R | I 1 1 P R ]

0 T - x Grab the grey line itself
- -l - - T e to move it up/down or
g left/right.

2 -2T0 - i
Pl 9.3 ceg f
| Fre o see e The Status bar dlsplgys
1o e e 1of | the updated constraint
A/F.wuency (racksen) values.
Location: from 10 ta 103 rad/zec ‘
Slope: -24.5 dB/decade
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An alternative way to adjust a constraint is to select Design Constraints and
then Edit from the right-click menu. The Edit Constraints window opens.

<)} Edit Constraints  [H[E E3
Ediitor: IRDot Locus Editar vI

Lotu Tt -1 ol (D' 2mping Ratio (0.707)

Damping Ratio = ID.?D?

Close | Help |

"CDnstraint parameters

To adjust a constraint, select the constraint by clicking on it and change the
values in the fields of the Constraint parameters panel. If you have additional
constraints in, for example, the Bode diagram, you can edit them directly from
this window by selecting Open-Loop Bode from the Editor menu.

Deleting Constraints

To delete a constraint, place your cursor directly over the constraint itself. You
cursor changes into a large ‘x'. Right-click to open a menu containing Edit and
Delete. Select Delete from the menu list; this eliminates the constraints. You
can also delete constraints by left-clicking on the constraint and then pressing
the BackSpace or Delete key on your keyboard.

Finally, you can delete constraints by selecting Undo Add Constraint from the
Edit menu, or pressing Ctri+Z if adding constraints was the last action you
took.

Grid
Grid adds a grid to the selected plot.
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Zoom
Selecting Zoom opens this submenu.

Add 4
Delete PolefZero
Edit Compensatar...

Design Constraints... |

Girid
EC
Froperties... In-ix
In-'

i
You have the following zooming options:

= X-Y — Enlarge a selected area in the X-Y region. To do this, select X-Y, hold
down your mouse’s left button, and drag to create a box region on the root
locus. When you release the left button, the selected area becomes the entire
plot region.

=« In-X — Zoom in, X-axis only. To do this, select In-X, hold down your mouse’s
left button, and drag horizontally to create a line parallel to the X-axis. When
you release the left button, the selected area becomes the new X-axis limits.

< In-Y — Zoom in, Y-axis only. To do this, select In-Y, hold down your mouse’s
left button, and drag vertically to create a line parallel to the Y-axis. When
you release the left button, the selected area becomes the new Y-axis limits.

= Out — Select Out to undo the last zoom in that you did. If you have not done
any zooming, or if you have undid all your zoom enlargements, the Out menu
item is grayed out.

Properties

Properties opens the Property Editor, which is a GUI for customizing root
locus, Bode diagrams, and Nichols plots inside the SISO Design Tool. The
Property Editor automatically reconfigures as you select among the different
plots open.
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This picture shows the open window for the root locus.
<) Property Editor: Root Locus M=l E3

Lakels | Limts | options |

Text

Title: IRoot Locus

¥oLabel  [Real Axis

Y -Lahel: Ilmag Axiz

Close | Help |

You can use this window to change titles and axis labels, reset axes limits, add
grid lines, and change the aspect ratio of the plot. For a complete discussion of
the Property Editor, see “Customizing Plots Inside the SISO Design Tool”
online in the Control System Toolbox documentation.

Note that you can also activate this menu by double-clicking anywhere in the
root locus away from the curve.

The are only three pages in the Property Editor: Labels, Limits, and Options.
The configuration of each page differs, depending on whether you're working
with the root-locus, Bode diagrams, or the open-loop Nichols plot. Click the
Help button on the Property Editor you have open to view information specific
to that editor, or click on the links below:

<= Root locus
= Bode diagram
= Nichols plot.
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Status Panel

The Status panel is located at the bottom of the SISO Design Tool. It displays
the most recent action you have performed, occasionally provides advice on how
to use the SISO Design Tool, and tracks key parameters when moving objects
in the design views.
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All the response plots that the Control System Toolbox creates have right-click
menus available. The plots include the following:

= bode

= bodemag
= impulse
= initial
= nichols
= nyquist
= pzmap
- sigma
= step

Note Click on any of the items in the right-click menus, shown below, to get
help on the feature.

Systems 4 Systems 3
Characteristics  » Axis Grouping »
Grid I{0 Selectar...
2Bl ' Characteristics
Properties... Grid
Zoom »
Froperties...

Right-Click Menus for SISO and MIMO/LTI Array Models.

You can do the following using the right-click menus for response plots:

=« Select and deselect imported systems

= Change plot characteristics

< Add and remove grid lines

< Zoom in and out of selected plot regions

= Open the Property Editor for the selected plot
< In the MIMO/LTI array case:



- regroup the plots
- Select subsets of 1/O pairs
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Right-Click Menus for SISO Systems

When you create a response plot for a SISO system, you have available a set of
right-click menu options, which are described in the following sections.

Systems
ld v Gservo (blue) |
Characteristics
Girid
Zoom 4
Froperties...

Use Systems to select which of the imported systems to display. Selecting a
system causes a check mark to appear beside the system. To deselect a system,
select it again; the menu toggles between selected and deselected.

Characteristics

The Characteristics menu changes for each plot response type. This picture
shows the options for a step response.

Systems 4 |

cteristics Feak Response

Grid Settling Time
Zoom »  Rise Time

L Stoady State

Froperties...

The following table lists the characteristics available for each response plot
type.

Table 4-1: Options Available from the Characteristics Menu

Function Characteristics
bode Peak Response
bodemag Peak Response
impulse Peak Response
Settling Time
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Table 4-1: Options Available from the Characteristics Menu

Function Characteristics
initial Peak Response
nichols Peak Response
nyquist Peak Response
pzmap None
sigma Peak Response
step Peak Response
Settling Time
Rise Time

Steady State

Grid

Systems 4

Characteristics

Zoom 4
Froperties...

The Grid command activates a grid appropriate to the plot in the region you
select.
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Zoom
The Zoom command zooms in and out of the plot region selected.

Systems 4

Characteristics

Girid
[Zoom Y
Froperties... In-ix
In-'

i

There are four options:
= In-X — Zoom in on the specified strip of the x axis.
=< In-Y — Zoom in on the specified strip of the y axis.

= X-Y — Zoom in on the specified box region of the x and y axes.
< Out — Zoom out.

When you select In-X or In-Y, left-click the mouse to specify the region of the x
or y axis that you want to zoom in on. Similarly, for the X-Y option, left-click
and drag your mouse to create a rectangular region that you want to zoom in
on.

Out restores the previous appearance of the plot. Note that Out is grey when
you have reached the limit of zooming out.

Properties

Systems 4

Characteristics
Grid
Zoom 4

Use Properties to open the Property Editor. This GUI allows you to customize
labels, axes limits and units, grids and font styles, and response characteristics
(e.g., rise time) for your plot.



Right-Click Menus for SISO Systems

For a full description of the Property Editor, see “Customizing Response Plot
Properties” online in the Control System Toolbox documentation.
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Right-Click Menus for MIMO and LTI Arrays

All of the menu options described in “Right-Click Menus for SISO Systems” on
page 4-4 hold when you have generated a response plot for a MIMO model or
an LTI Array.

Note, however, that when you have a MIMO model or LTI array displayed, the
right-click menus contain additional options: Axis Grouping and 1/O selector.
These features allow you to quickly reshuffle multiple plots in a single window.

Note Click on items in the right-click menu pictured below to get help
contents.

Systems 4

Axis Grouping  *

/0 Selectar...
Characteristics
Grid

Zoom 4
Froperties...

Axis Grouping
You can uses Axis Grouping to change the grouping of plots in a single plot
window. This picture shows the menu options.

Flot Type 4
Systems 4

Sxis Grouping ¥ [CNIEGEE!

/0 Selectar... All
Characteristics Ionptutst
Grid | SRR
Zoom 4
Froperties...

There are four options:



Right-Click Menus for MIMO and LTI Arrays

= None — By default, there is no axis grouping. For example, if you display the
step responses for a 4-input, 2- output system, there will be six plots in your
window.

= All — Groups all the responses into a single plot

= Inputs — Groups all the responses by inputs. For example, for a 4-input,
2-output system, selecting Inputs reconfigures the viewer so that there are
3 plots. Each plot contains two curves.

= Outputs — Groups all the responses by outputs. For example, for a 4-input,
2-output system, selecting Outputs reconfigures the viewer so that there are
2 plots. Each plot contains three curves.

/0O Selector
1/0 Selector opens the 1/0 Selector window, shown below.

<) 10 Selector: st._. M= E

[all] i1y Wy}

Y1) ] .

Y2 ] .

hE)] ] .
Cloge | Help |

The 1/0 Selector window contains buttons corresponding to each 1/O pair. In
this example, there are 2 inputs and 3 outputs, so there are six buttons. By
default, all the 1/O pairs are selected. If you click on a button, that 1/O pair
alone is displayed in the plot window. The other buttons automatically
deselect.

To select a column of inputs, click on the input name above the column. The
names are U(1), U(2), and so on. The plot window displays the responses from
the specified input to all the outputs.

To select a row of output, click on the output name to the left of the row. The
names are Y(1), Y(2), and so on. The plot window displays the responses from
all the inputs to the specified output.

To reestablish the default setting, click [all]. The plot window displays all the
1/0O pairs.
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5 Function Reference

Introduction

This chapter contains detailed descriptions of all Control System Toolbox
functions. It begins with a list of functions grouped by subject area and
continues with the reference entries in alphabetical order. Information is also
available through the online Help facility.
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Functions by Category

Functions by Category

LTI Models

Function Name

Description

drss

dss

filt

frd

frdata

get

rss

set

Ss

ssdata, dssdata
tf

tfdata
totaldelay
zpk

zpkdata

Generate random discrete state-space model
Create descriptor state-space model

Create discrete filter with DSP convention
Create a frequency response data (FRD) model
Retrieve data from an FRD model

Query LTI model properties

Generate random continuous state-space model
Set LTI model properties

Create state-space model

Retrieve state-space data

Create transfer function

Retrieve transfer function data

Provide the aggregate delay for an LTI model
Create zero-pole-gain model

Retrieve zero-pole-gain data
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Model Characteristics

Function Name Description

class Display model type ('tf', 'zpk', 'ss', or 'frd')
hasdelay Test true if LTI model has any type of delay
isa Test true if LTI model is of specified type

isct Test true for continuous-time models

isdt Test true for discrete-time models

isempty Test true for empty LTI models

isproper Test true for proper LTI models

issiso Test true for SISO models

ndims Display the number of model/array dimensions
size Display output/input/array dimensions

Model Conversion

Function Name Description

cad Convert from continuous- to discrete-time models

chgunits Convert the units property for FRD models

d2c Convert from discrete- to continuous-time models

d2d Resample discrete-time models

delay2z Convert delays in discrete-time models or FRD
models

frd Convert to a frequency response data model
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Model Conversion (Continued)

Function Name

Description

pade
reshape
residue
SS

tf

zpk

Compute the Padé approximation of delays
Change the shape of an LTI array

Provide partial fraction expansion

Convert to a state space model

Convert to a transfer function model

Convert to a zero-pole-gain model

Model Order Reduction

Function Name

Description

balreal

minreal

modred

sminreal

Calculate an I/O balanced realization

Calculate minimal realization or eliminate
pole/zero pairs

Delete states in 1/O balanced realization

Calculate structured model reduction

State-Space Realizations

Function Name

Description

canon
ctrb
ctrbf

gram

Canonical state-space realizations
Controllability matrix
Controllability staircase form

Controllability and observability grammians
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State-Space Realizations (Continued)

Function Name

Description

obsv
obsvf
$s2ss

sshal

Observability matrix
Observability staircase form
State coordinate transformation

Diagonal balancing of state-space realizations

Model Dynamics

Function Name

Description

bandwidth
damp
dcgain
covar
dsort
esort
norm
pole, eig
pzmap
rlocus
roots

sgrid, zgrid

zero

Calculate the bandwidth of SISO models
Calculate natural frequency and damping
Calculate low-frequency (DC) gain

Calculate covariance of response to white noise
Sort discrete-time poles by magnitude

Sort continuous-time poles by real part
Calculate norms of LTI models (H, and L)
Calculate the poles of an LTI model

Plot the pole/zero map of an LTI model
Calculate and plot root locus

Calculate roots of polynomial

Superimpose s- and z-plane grids for root locus or
pole/zero maps

Calculate zeros of an LTI model




Functions by Category

Model Interconnections

Function Name

Description

append
augstate

connect

feedback
1ft

ord2
parallel
series

stack

Append models in a block diagonal configuration
Augment output by appending states

Connect the subsystems of a block-diagonal model
according to an interconnection scheme of your
choice

Calculate the feedback connection of models
Form the LFT interconnection (star product)
Generate second-order model

Create a generalized parallel connection
Create a generalized series connection

Stack LTI models into a model array

Time Response

Function Name

Description

gensig
impulse
initial
Isim
ltiview

step

Generate an input signal

Calculate and plot impulse response

Calculate and plot initial condition response
Simulate response of LTI model to arbitrary inputs
Open the LTI Viewer for linear response analysis

Calculate step response
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Time Delays

Function Name

Description

delay2z
pade

totaldelay

Convert delays in discrete-time models or FRD models
Compute the Padé approximation of delays

Provide the aggregate delay for an LTI model

Frequency Response

Function Name

Description

allmargin

bode
bodemag
evalfr

freqresp

interp
linspace

logspace

ltiview
margin
ngrid

nichols

Calculate all crossover frequencies and associated
gain, phase, and delay margins

Calculate and plot Bode response
Calculate and plot Bode magnitude only
Evaluate response at single complex frequency

Evaluate frequency response for selected
frequencies

Interpolate FRD model between frequency points
Create a vector of evenly spaced frequencies

Create a vector of logarithmically spaced
frequencies

Open the LTI Viewer for linear response analysis
Calculate gain and phase margins
Superimpose grid lines on a Nichols plot

Calculate Nichols plot




Functions by Category

Frequency Response (Continued)

Function Name

Description

nyquist

sigma

Calculate Nyquist plot

Calculate singular value plot

SISO Feedback Design

Function Name

Description

allmargin

margin
rlocus

sisotool

Calculate all crossover frequencies and associated gain,
phase, and delay margins

Calculate gain and phase margins
Calculate and plot root locus

Open the SISO Design Tool

Pole Placement

Function Name

Description

acker Calculate SISO pole placement design
place Calculate MIMO pole placement design
estim Form state estimator given estimator gain
reg Form output-feedback compensator given
state-feedback and estimator gains
LQG Design

Function Name

Description

1gr

dlgr

Calculate the LQ-optimal gain for continuous
models

Calculate the LQ-optimal gain for discrete models
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LQG Design (Continued)

Function Name

Description

lgry

1grd

kalman

kalmd

lqgreg

Calculate the LQ-optimal gain with output
weighting

Calculate the discrete LQ gain for continuous
models

Calculate the Kalman estimator

Calculate the discrete Kalman estimator for
continuous models

Form LQG regulator given LQ gain and Kalman
filter

Equation Solvers

Function Name

Description

care
dare
lyap
dlyap

Solve continuous-time algebraic Riccati equations
Solve discrete-time algebraic Riccati equations
Solve continuous-time Lyapunov equations

Solve discrete-time Lyapunov equations

Graphical User Interfaces for Control System Analysis and Design

Function Name

Description

ltiview

sisotool

Open the LTI Viewer for linear response analysis

Open the SISO Design GUI
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acker

Purpose
Syntax

Description

Limitations

See Also

References

Pole placement design for single-input systems
k = acker(A,b,p)
Given the single-input system

X = AXx+bu

and a vector p of desired closed-loop pole locations, acker (A,b,p)uses
Ackermann’s formula [1] to calculate a gain vector k such that the state
feedback u = —kx places the closed-loop poles at the locations p. In other
words, the eigenvalues of A —bk match the entries of p (up to ordering). Here
A is the state transmitter matrix and b is the input to state transmission vector.

You can also use acker for estimator gain selection by transposing the matrix
A and substituting ¢' for b when y = cx is a single output.

1 = acker(a',c',p)."'
acker is limited to single-input systems and the pair (A, b) must be
controllable.

Note that this method is not numerically reliable and starts to break down
rapidly for problems of order greater than 5 or for weakly controllable systems.
See place for a more general and reliable alternative.

lgr Optimal LQ regulator
place Pole placement design
rlocus Root locus design

[1] Kailath, T., Linear Systems, Prentice-Hall, 1980, p. 201.
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allmargin

Purpose
Syntax

Description

See Also

5-12

Compute all crossover frequencies and corresponding stability margins
S = allmargin(sys)

allmargin computes the gain, phase, and delay margins and the corresponding
crossover frequencies of the SISO open-loop model sys. allmargin is applicable
to any SISO model, including models with delays.

The output S is a structure with the following fields:

< GMFrequency — All -180 degree crossover frequencies (in rad/sec)

= GainMargin — Corresponding gain margins, defined as 1/G where G is the
gain at crossover

= PMFrequency — All 0 dB crossover frequencies in rad/sec
< PhaseMargin — Corresponding phase margins in degrees

= DMFrequency and DelayMargin — Critical frequencies and the
corresponding delay margins. Delay margins are given in seconds for
continuous-time systems and multiples of the sample time for discrete-time
systems.

=« Stable — 1 if the nominal closed-loop system is stable, O otherwise.

ltimodels Help on LTI models
ltiview LTI system viewer
margin Gain and phase margins for SISO open-loop systems



append

Purpose
Syntax

Description

Group LTI models by appending their inputs and outputs
sys = append(sys1,sys2,...,sysN)

append appends the inputs and outputs of the LTI models sys1,...,sysN to form
the augmented model sys depicted below.

u, — sysi Ll 4]

U, — | sys2 -y,

Un | sysN > YN
sys

For systems with transfer functions H,(s) ,...,Hy(s) , the resulting system sys
has the block-diagonal transfer function

Hi(s) 0 . O
0 Hy(s) .

: . .0
0 . 0 Hy(s)

For state-space models sys1 and sys2 with data (A}, B;,C;,D,)
and (A,, B,, C,,D,), append(sys1,sys2) produces the following state-space
model.
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append

Arguments

Example

5-14

xlelo xl+Blo ug
_xz_ _O Az_ _x2_ _0 Bz_ _u2_
y1:C10 x1+D10 u;
_yz_ _0 Cz_ _xz_ _O D2_ _uz_

The input arguments sys1,..., sysN can be LTI models of any type. Regular
matrices are also accepted as a representation of static gains, but there should
be at least one LTI object in the input list. The LTI models should be either all
continuous, or all discrete with the same sample time. When appending models
of different types, the resulting type is determined by the precedence rules (see
Precedence Rules for details).

There is no limitation on the number of inputs.

The commands

sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)

produce the state-space model

Sys
a =
X1 X2
X1 0 0
X2 0 1.00000
b =
ui u2 ud
x1 1.00000 0 0
X2 0 0 2.00000
C =
X1 X2
y1 1.00000 0



append

See Also

y2 0 0
y3 0 3.00000

ui u2
y1 0 0
y2 0 10.00000
y3 0 0

Continuous-time system.

connect
feedback
parallel
series

Modeling of block diagram interconnections

Feedback connection
Parallel connection
Series connection

u3

0

0
4.00000

5-15



augstate

Purpose
Syntax

Description

Limitation

See Also

5-16

Append the state vector to the output vector
asys = augstate(sys)

Given a state-space model sys with equations

X = Ax+Bu
y = Cx+Du

(or their discrete-time counterpart), augstate appends the states x to the
outputs y to form the model

- B

This command prepares the plant so that you can use the feedback command
to close the loop on a full-state feedback u = —Kx.

Because augstate is only meaningful for state-space models, it cannot be used
with TF, ZPK or FRD models.

feedback Feedback connection
parallel Parallel connection
series Series connection



balreal

Purpose

Syntax

Description

Example

Input/output balancing of state-space realizations

sysb = balreal(sys)
[sysb,g,T,Ti] = balreal(sys)

sysb = balreal(sys) produces a balanced realization sysb of the LTI model
sys with equal and diagonal controllability and observability grammians (see
gram for a definition of grammian). balreal handles both continuous and
discrete systems. If sys is not a state-space model, it is first and automatically
converted to state space using ss.

[sysb,g,T,Ti] = balreal(sys) also returns the vector g containing the
diagonal of the balanced grammian, the state similarity transformation
X, = Tx used to convert sys to sysb, and the inverse

transformationTi = T

If the system is normalized properly, the diagonal g of the joint grammian can
be used to reduce the model order. Because g reflects the combined
controllability and observability of individual states of the balanced model, you
can delete those states with a small g (i) while retaining the most important
input-output characteristics of the original system. Use modred to perform the
state elimination.

Consider the zero-pole-gain model

sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)

Zero/pole/gain:
(s+10) (s+20.01)

(s+5) (s+9.9) (s+20.1)
A state-space realization with balanced grammians is obtained by
[sysb,g] = balreal(sys)

The diagonal entries of the joint grammian are
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1.0062e-01 6.8039e-05 1.0055e-05

which indicates that the last two states of sysb are weakly coupled to the input
and output. You can then delete these states by

sysr = modred(sysb,[2 3], 'del")
to obtain the following first-order approximation of the original system.

zpk(sysr)

Zero/pole/gain:
1.0001

Compare the Bode responses of the original and reduced-order models.



balreal

Algorithm

bode(sys,'-"',sysr,'x")

Bode Diagrams

Phase (deg); Magnitude (dB)

-100 0 ‘ 1 2
10 10 10

Frequency (rad/sec)

Consider the model

X = Ax+Bu
y = Cx+Du

with controllability and observability grammians W, and W, . The state
coordinate transformation X = Tx produces the equivalent model

% = TAT 'x+TBu

y = CT 'x+Du

and transforms the grammians to
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balreal

Limitations

See Also

References
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We=TW,T, Wo =T W, T

The function balreal computes a particular similarity transformation T
such that

W, = W, = diag(g)
See [1,2] for details on the algorithm.

The LTI model sys must be stable. In addition, controllability and
observability are required for state-space models.

gram Controllability and observability grammians
minreal Minimal realizations
modred Model order reduction

[1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, “Computation of System
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987),
pp. 115-122.

[2] Moore, B., “Principal Component Analysis in Linear Systems:
Controllability, Observability, and Model Reduction,” IEEE Transactions on
Automatic Control, AC-26 (1981), pp. 17-31.

[3] Laub, A.J., “Computation of Balancing Transformations,” Proc. ACC, San
Francisco, Vol.1, paper FA8-E, 1980.



bandwidth

Purpose

Syntax

Description

See Also

Compute the frequency response bandwidth

b
b

bandwidth(sys)
bandwidth (sys,dbdrop)

fb = bandwidth(sys) computes the bandwidth fb of the SISO model sys,
defined as the first frequency where the gain drops below 70.79 percent (-3 dB)
of its DC value. The frequency fb is expressed in radians per second. You can
create sys using tf, ss, or zpk, see 1timodels for details.

fb = bandwidth(sys,dbdrop) further specifies the critical gain drop in dB.
The default value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of LTI models, bandwidth returns an array of
the same size such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,3ip))
dcgain Compute the steady-state gain of LTI models
issiso Returns 1 if the system is SISO
ltimodels General information about LTI models
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bode

Purpose

Syntax

Description

5-22

Compute the Bode frequency response of LTI models

bode(sys)
bode (sys,w)

bode(sys1,sys2,...,sysN)
bode(sys1,sys2,...,SysN,w)

bode(sys1, 'PlotStyle1',...,sysN, 'PlotStyleN')
[mag,phase,w] = bode(sys)

bode computes the magnitude and phase of the frequency response of LTI
models. When invoked without left-hand arguments, bode produces a Bode plot
on the screen. The magnitude is plotted in decibels (dB), and the phase in
degrees. The decibel calculation for mag is computed as 201og4q(|H(jw)|),
where |H(jw)| is the system'’s frequency response. Bode plots are used to
analyze system properties such as the gain margin, phase margin, DC gain,
bandwidth, disturbance rejection, and stability.

bode (sys) plots the Bode response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. In the MIMO case, bode
produces an array of Bode plots, each plot showing the Bode response of one
particular 1/0 channel. The frequency range is determined automatically based
on the system poles and zeros.

bode (sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set
w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. All frequencies should be specified in radians/sec.

bode(sys1,sys2,...,sysN) or bode(sys1,sys2,...,sysN,w) plots the Bode
responses of several LTI models on a single figure. All systems must have the
same number of inputs and outputs, but may otherwise be a mix of continuous
and discrete systems. This syntax is useful to compare the Bode responses of
multiple systems.

bode(sys1, 'PlotStylel',...,sysN, 'PlotStyleN') specifies which color,
linestyle, and/or marker should be used to plot each system. For example,
bode(sys1, 'r--',sys2,'gx"')



bode

Remark

Arguments

Example

uses red dashed lines for the first system sys1 and green 'x' markers for the
second system sys2.

When invoked with left-hand arguments

[mag,phase,w] = bode(sys)
[mag,phase] = bode(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays with the
frequency as the last dimension (see “Arguments” below for details). You can
convert the magnitude to decibels by

magdb = 20*log10(mag)

If sys is an FRD model, bode (sys,w), w can only include frequencies in
sys.frequency.

The output arguments mag and phase are 3-D arrays with dimensions
(number of outputs) x (number of inputs) x (length of w)
For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and

phase of the response at the frequency w, =w(k).

mag(1,1.k) = [h(jooy )|
phase(1,1k) = Oh(jw,)

MIMO systems are treated as arrays of SISO systems and the magnitudes and
phases are computed for each SISO entry h;; independently (h;; is the transfer
function from input j to output i). The values mag(i,j, k) and phase(i,j,k)
then characterize the response of h;; at the frequency w(k).

mag(i,j k) = |hij(jwk)’
phase(i,j,k) = Dhij(jwk)

You can plot the Bode response of the continuous SISO system
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s2+01s+75

4

H(s) =
s +0.125% + 952

by typing

g = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(g)

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Deda "A A/ | @20

Bode Diagram

Magnitude (dB)

-40
45

ie]
=1

Phase (deg)

=
o

-180
10

Fregquency (radizec)

To plot the response on a wider frequency range, for example, from 0.1 to 100
rad/sec, type

bode(g,{0.1 , 100})

You can also discretize this system using zero-order hold and the sample time
T, = 0.5 second, and compare the continuous and discretized responses by

typing
gd = c2d(g,0.5)

5-24



bode

Algorithm

bode(g, 'r',gd, 'b--")

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Dsda/ "A A/ ®BpD0

Bode Diagram

Magnitude (dB)

Phase (deg)

Fregquency (radizec)

For continuous-time systems, bode computes the frequency response by
evaluating the transfer function H(s) on the imaginary axis s = jw. Only
positive frequencies w are considered. For state-space models, the frequency
response is D + C(jw—A)_lB , w=0

When numerically safe, A is diagonalized for maximum speed. Otherwise, A
is reduced to upper Hessenberg form and the linear equation (jo—A)X = B
is solved at each frequency point, taking advantage of the Hessenberg
structure. The reduction to Hessenberg form provides a good compromise
between efficiency and reliability. See [1] for more details on this technique.

For discrete-time systems, the frequency response is obtained by evaluating
the transfer function H(z) on the unit circle. To facilitate interpretation, the
upper-half of the unit circle is parametrized as
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Diagnostics

See Also

References

5-26

where T, is the sample time. w, is called the Nyquist frequency. The
equivalent “continuous-time frequency” w is then used as the x -axis variable.
Because

joTs

H(e )

is periodic with period 2wy, bode plots the response only up to the Nyquist
frequency wy . If the sample time is unspecified, the default value T, = 1 is
assumed.

If the system has a pole on the jw axis (or unit circle in the discrete case) and
w happens to contain this frequency point, the gain is infinite, jwl —A is
singular, and bode produces the warning message

Singularity in freq. response due to jw-axis or unit circle pole.

evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer

nichols Nichols plot

nyquist Nyquist plot

sigma Singular value plot

[1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.



bodemag

Purpose Compute the Bode magnitude response of LTI models

Syntax bodemag(sys)
bodemag(sys, {wmin,wmax})
bodemag (sys,w)

bodemag(sysi1,sys2,...,sysN,w)
bodemag(sysi1, 'PlotStyletl’,...,sysN, 'PlotStyleN')
Description bodemag(sys) plots the magnitude of the frequency response of the LTI model

SYS (Bode plot without the phase diagram). The frequency range and number
of points are chosen automatically.

bodemag(sys, {wmin,wmax}) draws the magnitude plot for frequencies between
wmin and wmax (in radians/second).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in
radians/second, at which the frequency response is to be evaluated.

bodemag(sysi1,sys2,...,sysN,w) shows the frequency response magnitude of
several LTI models sys1,sys2,...,sysNon asingle plot. The frequency vector
w is optional. You can also specify a color, line style, and marker for each model,
asin

bodemag(sysi, 'r',sys2,'y--"',sys3, 'gx').

See Also bode Compute the Bode frequency response of LTI models
ltiview Open an LTI Viewer
ltimodels Help on LTI models
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c2d

Purpose Discretize continuous-time systems

Syntax sysd = c2d(sys,Ts)
sysd c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,method)

Description sysd = c2d(sys,Ts) discretizes the continuous-time LTI model sys using
zero-order hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) gives access to alternative discretization
schemes. The string method selects the discretization method among the

following:

'zoh' Zero-order hold. The control inputs are assumed piecewise
constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold, see [1], p.
151). The control inputs are assumed piecewise linear over
the sampling period Ts.

'tustin' Bilinear (Tustin) approximation.

"prewarp' Tustin approximation with frequency prewarping.

'matched’ Matched pole-zero method. See [1], p. 147.

Refer to “Continuous/Discrete Conversions of LTI Models” in Chapter 3 for
more detail on these discretization methods.

c2d supports MIMO systems (except for the 'matched' method) as well as LTI
models with delays with some restrictions for 'matched' and 'tustin'
methods.

[sysd,G] = c2d(sys,Ts,method) returns a matrix G that maps the continuous
initial conditions x, and u, to their discrete counterparts x[0] and u[0]
according to

X
A
Ug

x[0]

uf0]

Up
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Example Consider the system
H(s) = _E...S..i.._
S +4s+5

with input delay T4 = 0.35 second. To discretize this system using the
triangle approximation with sample time T, = 0.1 second, type

H=tf([1 -1]1,[1 4 5], 'inputdelay',0.35)

Transfer function:

exp(-0.35*%s) * -------------

Hd = c2d(H,0.1,'foh')

Transfer function:
0.0115 z"3 + 0.0456 z*2 - 0.0562 z - 0.009104

z"6 - 1.629 z"5 + 0.6703 z"4

Sampling time: 0.1

The next command compares the continuous and discretized step responses.
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step(H,"'-',Hd,"'--")

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Deda "A A/ | @20

Step Response
T T

Amplitude:

-0.25 L L
1] 0.5 1 1.5 2 25 S| 35
Time (zec)
See Also d2c Discrete to continuous conversion
d2d Resampling of discrete systems-
References [1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic

Systems, Second Edition, Addison-Wesley, 1990.
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Purpose

Syntax

Description

Compute canonical state-space realizations

csys = canon(sys,’type’)
[csys,T] = canon(sys,’type’)

canon computes a canonical state-space model for the continuous or discrete
LTI system sys. Two types of canonical forms are supported.

Modal Form

csys = canon(sys, 'modal') returns arealization csys in modal form, that is,
where the real eigenvalues appear on the diagonal of the A matrix and the
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of A.
For a system with eigenvalues (A;, 0+ jw, A,), the modal A matrix is of the
form

Ap 00O
0 0o w O
0 -wao O
0 0 0 A,

Companion Form

csys = canon(sys, 'companion') produces a companion realization of sys
where the characteristic polynomial of the system appears explicitly in the
rightmost column of the A matrix. For a system with characteristic polynomial

_n n-1
p(s) =s +a;s +..+a,_1S+a,

the corresponding companion A matrix is

0 o0 —a, |
0 —an,_1
A = 0 1
0 :
0 —-a,
0 —a,
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For state-space models sys,
[csys,T] = canon(a,b,c,d, 'type’)

also returns the state coordinate transformation T relating the original state
vector x and the canonical state vector X .

Xe = Tx
This syntax returns T=[ ] when sys is not a state-space model.

Transfer functions or zero-pole-gain models are first converted to state space
using ss.

The transformation to modal form uses the matrix P of eigenvectors of the A
matrix. The modal form is then obtained as

Xe

y

PAPx_ +P 'Bu
CPx,+Du

The state transformation T returned is the inverse of P.

The reduction to companion form uses a state similarity transformation based
on the controllability matrix [1].

The modal transformation requires that the A matrix be diagonalizable. A
sufficient condition for diagonalizability is that A has no repeated eigenvalues.

The companion transformation requires that the system be controllable from
the first input. The companion form is often poorly conditioned for most
state-space computations; avoid using it when possible.

ctrb Controllability matrix
ctrbf Controllability canonical form
$82sS State similarity transformation

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.
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Purpose

Syntax

Description

Solve continuous-time algebraic Riccati equations (CARE)

[X,L,G,rr] = care(A,B,Q)

[X,L,G,rr] = care(A,B,Q,R,S,E)

[X,L,G,report] = care(A,B,Q,..., " 'report')
[X1,X2,L,report] = care(A,B,Q,..., 'implicit"')

[X,L,G,rr] = care(A,B,Q) computes the unique solution X of the algebraic
Riccati equation

Ric(X) = ATX+XA—-XBB'X+Q = 0

such that A—BB' X has all its eigenvalues in the open left-half plane. The
matrix X is symmetric and called the stabilizing solution of Ric(X) = 0.
[X,L,G,rr] = care(A,B,Q) also returns:

= The eigenvalues L of A — BB'X

= The gain matrix G = BTX

. ) _ IRic(X)ll
<« The relative residual rr defined by rr = ————

IX]
[X,L,G,rr] = care(A,B,Q,R,S,E) solves the more general Riccati equation

Ric(X) = ATXE+E ' XA—(E'XB+S)R I (B'XE+S")+Q = 0

Here the gain matrix is G = R_l(BTXE + ST) and the “closed-loop”
eigenvaluesare L = eig(A-B*G,E).

Two additional syntaxes are provided to help develop applications such as
H._, -optimal control design.

[X,L,G,report] = care(A,B,Q,..., " 'report')turns off the error messages
when the solution x fails to exist and returns a failure report instead.

The value of report is:

= -1 when the associated Hamiltonian pencil has eigenvalues on or very near
the imaginary axis (failure)

< -2 when there is no finite solution, i.e., X = XZXIl with X, singular
(failure)
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= The relative residual rr defined above when the solution exists (success)

Alternatively, [X1,X2,L,report] = care(A,B,Q,..., 'implicit') also turns

off error messages but now returns X in implicit form.
_ -1
X = X,X;
Note that this syntax returns report = 0 when successful.

Example 1
Given

S PE IR

you can solve the Riccati equation

1 -1 RrR=3

_ T
ATX+XA—XBRB X+C'C

1
o

by

a [-3 2;1 1]
b=10; 1]
c=1[1-1]
r=3

[x,1,9] = care(a,b,c'*c,r)

This yields the solution

X

0.5895 1.8216
1.8216 8.8188

You can verify that this solution is indeed stabilizing by comparing the

eigenvalues of a and a-b*g.

[eig(a) eig(a-b*g)]

ans =



care

Algorithm

Limitations

-3.4495 -3.5026
1.4495 -1.4370

Finally, note that the variable 1 contains the closed-loop eigenvalues
eig(a-b*g).

1
1 =
-3.5026
-1.4370
Example 2

To solve the H_, -like Riccati equation
ATX +XA+X(y°B,B] —B,BJ)X+C'C = 0
rewrite it in the care format as

-1 T
- B
ATX+XA-X [By,B,] | ¥ 1 0 lix+c'c =0
iy g RPN 5T
B ooo 2

R

You can now compute the stabilizing solution X by

B = [B1 , B2]

mi = size(B1,2)

m2 = size(B2,2)

R = [-g"2*eye(m1) zeros(mi,m2) ; zeros(m2,m1) eye(m2)]

X = care(A,B,C'*C,R)
care implements the algorithms described in [1]. It works with the
Hamiltonian matrix when R is well-conditioned and E = | ; otherwise it uses

the extended Hamiltonian pencil and QZ algorithm.

The (A, B) pair must be stabilizable (that is, all unstable modes are
controllable). In addition, the associated Hamiltonian matrix or pencil must
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have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold
are (Q, A) detectable when S = 0 and R>0, or

Sl
S R
dare Solve discrete-time Riccati equations
lyap Solve continuous-time Lyapunov equations

[1] Arnold, W.F., 111 and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984),
pp. 1746-1754.
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Purpose
Syntax

Description

Example

See Also

Convert the frequency units of an FRD model
sys = chgunits(sys,units)

sys = chgunits(sys,units) converts the units of the frequency points stored
in an FRD model, sys to units, where units is either of the strings 'Hz' or
'rad/s'. This operation changes the assigned frequencies by applying the
appropriate (2*pi) scaling factor, and the 'Units' property is updated.

If the 'Units' field already matches units, no conversion is made.

w = logspace(1,2,2);
Sys = rss(3,1,1);
Sys frd(sys,w)

From input 'input 1' to:

Frequency(rad/s) output 1
10 0.293773+0.0010331
100 0.294404+0.0001091

Continuous-time frequency response data.

sys = chgunits(sys, 'Hz"')

sys.freq
ans =
1.5915
15.9155
frd Create or convert to an FRD model
get Get the properties of an LTI model
set Set the properties of an LTI model
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Form a model with complex conjugate coefficients
Sysc = conj(sys)

sysc = conj(sys) isan constructs a complex conjugate model sysc by applying
complex conjugation to all coefficients of the LTI model sys. This function
accepts LTI models in transfer function (TF), zero/pole/gain (ZPK), and state
space (SS) formats.
If sys is the transfer function

(2+1i)/(s+1i)
then conj (sys) produces the transfer function

(2-i)/(s-1)

This operation is useful for manipulating partial fraction expansions.

append Append LTI systems

ss Specify or convert to state-space form

tf Specify or convert to transfer function form
zpk Specify or convert to zero-pole-gain form



connect

Purpose
Syntax

Description

Derive state-space model from block diagram description
sysc = connect(sys,Q,inputs,outputs)

Complex dynamical systems are often given in block diagram form. For
systems of even moderate complexity, it can be quite difficult to find the
state-space model required in order to bring certain analysis and design tools
into use. Starting with a block diagram description, you can use append and
connect to construct a state-space model of the system.

First, use
sys = append(sysi1,sys2,...,sysN)

to specify each block sysj in the diagram and form a block-diagonal,
unconnected LTI model sys of the diagram.

Next, use
sysc = connect(sys,Q,inputs,outputs)

to connect the blocks together and derive a state-space model sysc for the
overall interconnection. The arguments Q, inputs, and outputs have the
following purpose:

= The matrix Q indicates how the blocks on the diagram are connected. It has
a row for each input of sys, where the first element of each row is the input
number. The subsequent elements of each row specify where the block input
gets its summing inputs; negative elements indicate minus inputs to the
summing junction. For example, if input 7 gets its inputs from the outputs 2,
15, and 6, where the input from output 15 is negative, the corresponding row
ofQis[7 2 -15 6]. Short rows can be padded with trailing zeros (see
example below).

=« Given sys and Q, connect computes a state-space model of the
interconnection with the same inputs and outputs as sys (that is, the
concatenation of all block inputs and outputs). The index vectors inputs and
outputs then indicate which of the inputs and outputs in the large
unconnected system are external inputs and outputs of the block diagram.
For example, if the external inputs are inputs 1, 2, and 15 of sys, and the
external outputs are outputs 2 and 7 of sys, then inputs and outputs should
be set to
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inputs = [1 2 15];
outputs = [2 7];

The final model sysc has these particular inputs and outputs.

Since it is easy to make a mistake entering all the data required for a large
model, be sure to verify your model in as many ways as you can. Here are some
suggestions:

= Make sure the poles of the unconnected model sys match the poles of the
various blocks in the diagram.

= Check that the final poles and DC gains are reasonable.

= Plot the step and bode responses of sysc and compare them with your
expectations.

If you need to work extensively with block diagrams, Simulink is a much easier
and more comprehensive tool for model building.

Example Consider the following block diagram
sys2
up
sys1 — >
y X = Ax+Bu Y1
10 N = Cx+Du
U, —o S+5 y > Y,
sys3
2(s+1)

S+2 <

Given the matrices of the state-space model sys2

A= -9.0201 17.7791
-1.6943 3.2138 |;

B=1[-.5112 .5362
-.002 -1.8470];

C = [ -3.2897 2.4544
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-13.5009 18.0745];
D =1[-.5476 -.1410
-.6459 .2958 ];

Define the three blocks as individual LTI models.

sys1 = tf(10,[1 5], 'inputname’', 'uc')

sys2 ss(A,B,C,D, "inputname',{'ul' 'u2'},...
‘outputname’,{'y1' 'y2'})

sys3 = zpk(-1,-2,2)

Next append these blocks to form the unconnected model sys.
sys = append(sysi1,sys2,sys3)

This produces the block-diagonal model

Sys
a =
X1 X2 X3 X4
x1 -5 0 0 0
X2 0 -9.0201 17.779 0
X3 0 -1.6943 3.2138 0
x4 0 0 0 -2
b =
uc ui u2 ?
x1 4 0 0 0
X2 0 -0.5112 0.5362 0
x3 0 -0.002 -1.847 0
x4 0 0 0 1.4142
C:
X1 X2 x3 X4
? 2.5 0 0 0
yi 0 -3.2897 2.4544 0
y2 0 -13.501 18.075 0
? 0 0 0 -1.4142
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d =
uc ui u2 ?
? 0 0 0 0
y1 0 -0.5476 -0.141 0
y2 0 -0.6459 0.2958 0
? 0 0 0 2

Continuous-time system.

Note that the ordering of the inputs and outputs is the same as the block
ordering you chose. Unnamed inputs or outputs are denoted b.

To derive the overall block diagram model from sys, specify the
interconnections and the external inputs and outputs. You need to connect
outputs 1 and 4 into input 3 (u2), and output 3 (y2) into input 4. The
interconnection matrix Q is therefore

Q=1[31-4
43 0];

Note that the second row of Q has been padded with a trailing zero. The block
diagram has two external inputs uc and u1 (inputs 1 and 2 of sys), and two
external outputs y1 and y2 (outputs 2 and 3 of sys). Accordingly, set inputs
and outputs as follows.

inputs = [1 2];
outputs = [2 3];

You can obtain a state-space model for the overall interconnection by typing

sysc = connect(sys,Q,inputs,outputs)

q =
X1 X2 X3 X4
x1 -5 0 0 0
X2 0.84223 0.076636 5.6007 0.47644
X3 -2.9012 -33.029 45.164 -1.6411
x4 0.65708 -11.996 16.06 -1.6283
b =



connect

See Also

References

X1
X2
x3
X4

y1
y2

y1
y2

oo M~O

X1
-0.22148
0.46463

o

Continuous-time system.

ui

0
-0.076001
-1.5011
-0.57391

X2
-5.6818
-8.4826

ui
-0.66204
-0.40582

Note that the inputs and outputs are as desired.

append
feedback
minreal
parallel
series

Append LTI systems
Feedback connection

Minimal state-space realization

Parallel connection
Series connection

X3
5.6568
11.356

x4
-0.12529
0.26283

[1] Edwards, J.W., “A Fortran Program for the Analysis of Linear Continuous
and Sampled-Data Systems,” NASA Report TM X56038, Dryden Research

Center, 1976.
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Purpose Output and state covariance of a system driven by white noise
Syntax [P,Q] = covar(sys,W)
Description covar calculates the stationary covariance of the output y of an LTI model sys

driven by Gaussian white noise inputs w. This function handles both
continuous- and discrete-time cases.

P = covar(sys,W) returns the steady-state output response covariance

P=E(y')

given the noise intensity

E(W(t)W(T)T) =W 5(t—1) (continuous time)
E(w[k]w[I]T) =W g (discrete time)

[P,Q] = covar(sys,W) also returns the steady-state state covariance
Q = E(xx")

when sys is a state-space model (otherwise Q is setto []).

When applied to an N-dimensional LTI array sys, covar returns
multi-dimensional arrays P, Q such that

P(:,:,i1,...iN) and Q(:,:,i1,...1iN) are the covariance matrices for the
model sys(:,:,i1,...1iN).
Example Compute the output response covariance of the discrete SISO system
He) = 22— 1 =01
z-+0.2z+0.5

due to Gaussian white noise of intensity W = 5. Type

sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)

and MATLAB returns
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p:
30.3167

You can compare this output of covar to simulation results.

randn('seed',0)
w = sqrt(5)Crandn(1,1000); % 1000 samples

% Simulate response to w with LSIM:
y = 1sim(sys,w);

% Compute covariance of y values
psim = sum(y .0 y)/length(w);

This yields

psim =
32.6269

The two covariance values p and psim do not agree perfectly due to the finite
simulation horizon.

Transfer functions and zero-pole-gain models are first converted to state space
with ss.

For continuous-time state-space models

X = Ax+Bw
y = Cx+Dw

Q is obtained by solving the Lyapunov equation
AQ+QAT+BWB' =0

The output response covariance P is finite only when D = 0 and then
P=cQcC'.

In discrete time, the state covariance solves the discrete Lyapunov equation

AQA —Q+BWB' = 0
and P isgivenby P = CQCT+ DWD'
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Note that P is well defined for nonzero D in the discrete case.

The state and output covariances are defined for stable systems only. For
continuous systems, the output response covariance P is finite only when the
D matrix is zero (strictly proper system).

dlyap Solver for discrete-time Lyapunov equations
lyap Solver for continuous-time Lyapunov equations

[1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975, pp. 458-459.
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Purpose Form the controllability matrix
Syntax Co = ctrb(A,B)
Co = ctrb(sys)

Description ctrb computes the controllability matrix for state-space systems. For an
n-by-n matrix A and an n-by-m matrix B, ctrb (A, B) returns the controllability
matrix

— 2 n-1
Co = [B AB A'B ... A B} (5-1)

where Co has n rows and nm columns.

Co = ctrb(sys) calculates the controllability matrix of the state-space LTI
object sys. This syntax is equivalent to executing

Co = ctrb(sys.A,sys.B)

The system is controllable if Co has full rank n.

Example Check if the system with the following data
A =
1 1
4 -2
B =
1 -1
1 -1

is controllable. Type

Co=ctrb(A,B);

% Number of uncontrollable states
unco=length(A)-rank(Co)

and MATLAB returns

unco =
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Estimating the rank of the controllability matrix is ill-conditioned; that is, it is
very sensitive to round-off errors and errors in the data. An indication of this
can be seen from this simple example.

S

This pair is controllable if 30 but if &< ./eps, where eps is the relative
machine precision. ctrb(A,B) returns

(B AB| = E ﬂ

which is not full rank. For cases like these, it is better to determine the
controllability of a system using ctrbf.

ctrbf Compute the controllability staircase form
obsv Compute the observability matrix
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Purpose

Syntax

Description

Example

Compute the controllability staircase form

[Abar,Bbar,Cbar,T,k]
[Abar,Bbar,Cbar,T,k]

ctrbf(A,B,C)
ctrbf(A,B,C,to0l)

If the controllability matrix of (A, B) has rank r <n, where n is the size of
A, then there exists a similarity transformation such that

A= TAT' B = TB, C=cT'

where T isunitary, and the transformed system has a staircase form, in which
the uncontrollable modes, if there are any, are in the upper left corner.

— A,. 0 _ 0 _
A = uc , B = C=|C C
A21 Ac Bc , [ ne CJ
where (A, B,) is controllable, all eigenvalues of A . are uncontrollable, and

C.(s1-A,) "B, = C(sl-A)"'B.

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C) decomposes the state-space system
represented by A, B, and C into the controllability staircase form, Abar, Bbar,
and Cbar, described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the order of the system represented by A. Each
entry of k represents the number of controllable states factored out during each
step of the transformation matrix calculation. The number of nonzero elements
in k indicates how many iterations were necessary to calculate T, and sum(k) is
the number of states in A, the controllable portion of Abar.

ctrbf(A,B,C,tol) uses the tolerance tol when calculating the controllable/
uncontrollable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(A,1) *eps.

Compute the controllability staircase form for
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and locate the uncontrollable mode.

[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)

Abar =
-3.0000 0
-3.0000 2.0000

Bbar =
0.0000 0.0000
1.4142 -1.4142

Cbar =
-0.7071 .7071
0.7071 0.7071

o

-0.7071 0.7071
0.7071 0.7071

The decomposed system Abar shows an uncontrollable mode located at -3 and
a controllable mode located at 2.

Algorithm ctrbf is an M-file that implements the Staircase Algorithm of [1].
See Also ctrb Form the controllability matrix
minreal Minimum realization and pole-zero cancellation
References [1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.
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Purpose

Syntax

Description

Example

Convert discrete-time LTI models to continuous time

sysc
sysc

d2c(sysd)
d2c (sysd,method)

d2c converts LTI models from discrete to continuous time using one of the
following conversion methods:

‘zoh' Zero-order hold on the inputs. The control inputs are
assumed piecewise constant over the sampling period.
'tustin' Bilinear (Tustin) approximation to the derivative.
‘prewarp' Tustin approximation with frequency prewarping.
'matched’ Matched pole-zero method of [1] (for SISO systems only).

The string method specifies the conversion method. If method is omitted then

zero-order hold (' zoh') is assumed. See “Continuous/Discrete Conversions of

LTI Models” in Chapter 3 of this manual and reference [1] for more details on
the conversion methods.

Consider the discrete-time model with transfer function

z—-1
H@z) = 57—
z +z+0.3

and sample time T, = 0.1 second. You can derive a continuous-time
zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hc with the zero-order hold method (this is the
default method) and sampling period T = 0.1 gives back the original discrete
model H(z). To see this, type

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type
Hc = d2c(H, 'tustin')

As with zero-order hold, the inverse discretization operation
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c2d(Hc,0.1, "tustin')

gives back the original H(z).

The 'zoh' conversion is performed in state space and relies on the matrix
logarithm (see logm in Using MATLAB).

The Tustin approximation is not defined for systems with polesat z = -1 and
is ill-conditioned for systems with poles near z = —1.

The zero-order hold method cannot handle systems with polesat z = 0. In
addition, the 'zoh' conversion increases the model order for systems with
negative real poles, [2]. This is necessary because the matrix logarithm maps
real negative poles to complex poles. As a result, a discrete model with a single
pole at z = -0.5 would be transformed to a continuous model with a single
complex pole at log(—0.5) =—0.6931 + jmt. Such a model is not meaningful
because of its complex time response.

To ensure that all complex poles of the continuous model come in conjugate
pairs, d2c replaces negative real poles z = —a with a pair of complex conjugate
poles near —a . The conversion then yields a continuous model with higher
order. For example, the discrete model with transfer function

z+0.2

H(z) = >
(z+0.5)(z"+z+0.4)

and sample time 0.1 second is converted by typing

Ts = 0.1
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H)

MATLAB responds with

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:
-33.6556 (s-6.273) (s"2 + 28.29s + 1041)

(s"2 + 9.163s + 637.3) (s"2 + 13.86s + 1035)

Convert Hec back to discrete time by typing
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See Also

References

c2d(Hc,Ts)
yielding

Zero/pole/gain:
(z+0.5) (z+0.2)

Sampling time: 0.1

This discrete model coincides with H(z) after canceling the pole/zero pair at

= -0.5.
c2d Continuous- to discrete-time conversion
d2d Resampling of discrete models
logm Matrix logarithm

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Kollar, 1., G.F. Franklin, and R. Pintelon, “On the Equivalence of z-domain
and s-domain Models in System Identification,” Proceedings of the IEEE
Instrumentation and Measurement Technology Conference, Brussels, Belgium,
June, 1996, Vol. 1, pp. 14-19.
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Purpose
Syntax

Description

Example
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Resample discrete-time LTI models or add input delays
sys1 = d2d(sys,Ts)

sys1 = d2d(sys, Ts) resamples the discrete-time LTI model sys to produce an
equivalent discrete-time model sys1 with the new sample time Ts (in seconds).
The resampling assumes zero-order hold on the inputs and is equivalent to
consecutive d2c and c2d conversions.

sys1 = c2d(d2c(sys),Ts)

Consider the zero-pole-gain model

_z-0.7
H@ = =05
with sample time 0.1 second. You can resample this model at 0.05 second by
typing
H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)

Zero/pole/gain:
(z-0.8243)

Sampling time: 0.05

Note that the inverse resampling operation, performed by typing d2d (H2,0.1),
yields back the initial model H(z).

Zero/pole/gain:
(z-0.7)

Sampling time: 0.1

cad Continuous- to discrete-time conversion
d2c Discrete- to continuous-time conversion
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Purpose

Syntax

Description

Example

Compute damping factors and natural frequencies

[Wn,Z] = damp(sys)
[Wn,Z,P] = damp(sys)

damp calculates the damping factor and natural frequencies of the poles of an
LTI model sys. When invoked without lefthand arguments, a table of the
eigenvalues in increasing frequency, along with their damping factors and
natural frequencies, is displayed on the screen.

[Wn,Z] = damp(sys) returns column vectors Wn and Z containing the natural
frequencies w,, and damping factors { of the poles of sys. For discrete-time
systems with poles z and sample time T, damp computes “equivalent”
continuous-time poles s by solving
ST

z=¢e
The values Wn and Z are then relative to the continuous-time poles s. Both Wn
and Z are empty if the sample time is unspecified.

[Wn,Z,P] = damp(sys) returns an additional vector P containing the (true)
poles of sys. Note that P returns the same values as pole(sys) (up to
reordering).

Compute and display the eigenvalues, natural frequencies, and damping
factors of the continuous transfer function

252+53+1

82+25+3

H(s) =

Type
H=1tf([2 51],[1 2 3])

Transfer function:
2s"2+5s + 1

s*2 +2s + 3

Type
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See Also

5-56

damp (H)
and MATLAB returns

Eigenvalue Damping Freq. (rad/s)
-1.00e+000 + 1.41e+0001 5.77e-001 1.73e+000
-1.00e+000 - 1.41e+0001 5.77e-001 1.73e+000
eig Calculate eigenvalues and eigenvectors
esort,dsort Sort system poles
pole Compute system poles
pzmap Pole-zero map
zero Compute (transmission) zeros
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Purpose

Syntax

Description

Solve discrete-time algebraic Riccati equations (DARE)

[X,L,G,rr] = dare(A,B,Q,R)

[X,L,G,rr] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,..., 'report')
[X1,X2,L,report] = dare(A,B,Q,..., 'implicit"')

[X,L,G,rr] = dare(A,B,Q,R) computes the unique solution X of the
discrete-time algebraic Riccati equation

-1
Ric(X) = ATXA—X—-A'XB(B'XB+R) B'XA+Q = 0

such that the “closed-loop” matrix

-1
A, =A-B(B'XB+R) B'XA

cl =

has all its eigenvalues inside the unit disk. The matrix X is symmetric and
called the stabilizing solution of Ric(X) = 0. [X,L,G,rr] = dare(A,B,Q,R)
also returns:

= The eigenvalues L of A
< The gain matrix

-1
G = (BTXB+R) B'XA
= The relative residual rr defined by

IRic(X)l
IXI-

[X,L,G,rr] = dare(A,B,Q,R,S,E) solves the more general DARE:

-1
ATXA-ETXE-(ATXB+S)(B'XB+R) (B'XA+S")+Q = 0

The corresponding gain matrix and closed-loop eigenvalues are

-1
G =(B"XB+R) (B'XA+S")
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Algorithm

Limitations

See Also
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andL = eig(A-B*G,E).

Two additional syntaxes are provided to help develop applications such as
H_, -optimal control design.

[X,L,G,report] = dare(A,B,Q,..., 'report') turns off the error messages
when the solution X fails to exist and returns a failure report instead. The
value of report is:

= -1 when the associated symplectic pencil has eigenvalues on or very near the
unit circle (failure)

= -2 when there is no finite solution, that is, X = szf with X; singular
(failure)

= The relative residual rr defined above when the solution exists (success)

Alternatively, [X1,X2,L,report] = dare(A,B,Q,..., " 'implicit"') also turns
off error messages but now returns X in implicit form as

_ -1
X = X,X
Note that this syntax returns report = 0 when successful.

dare implements the algorithms described in [1]. It uses the QZ algorithm to
deflate the extended symplectic pencil and compute its stable invariant
subspace.

The (A, B) pair must be stabilizable (that is, all eigenvalues of A outside the
unit disk must be controllable). In addition, the associated symplectic pencil
must have no eigenvalue on the unit circle. Sufficient conditions for this to hold
are (Q, A) detectable when S = 0 and R>0, or

Q_I_ S >0

S R
care Solve continuous-time Riccati equations
dlyap Solve discrete-time Lyapunov equations
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References [1] Arnold, W.F., 111 and A.J. Laub, “Generalized Eigenproblem Algorithms
and Software for Algebraic Riccati Equations,” Proc. IEEE, 72 (1984), pp.
1746-1754.
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Purpose
Syntax

Description

Remark

Example

See Also
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Compute low frequency (DC) gain of LTI system

k

dcgain(sys)

=
I

dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency
s = 0. For state-space models with matrices (A, B, C, D), this value is

K=D-CA'B
Discrete Time
The discrete-time DC gain is the transfer function valueat z = 1. For
state-space models with matrices (A, B, C, D), this value is
K=D+C(I-A)"B

The DC gain is infinite for systems with integrators.

To compute the DC gain of the MIMO transfer function

1 23—1

H(s) = S"+s+3
1 S+2
s+1 s-3

type
H=[1tf([1 -1],[1 1 .3]) ; tf(1,[1 1]) tf([1 2],[1 -3])]
dcgain(H)

ans =
1.0000 -0.3333
1.0000 -0.6667

evalfr Evaluates frequency response at single frequency
norm LTI system norms
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|

Purpose Replace delays of discrete-time TF, SS, or ZPK models by poles at z=0, or
replace delays of FRD models by a phase shift

Syntax sys = delay2z(sys)

Description sys = delay2z(sys) maps all time delays to poles at z=0 for discrete-time TF,
ZPK, or SS models sys. Specifically, a delay of k sampling periods is replaced
by (1/z) "~k in the transfer function corresponding to the model.

For FRD models, delay2z absorbs all time delays into the frequency response
data, and is applicable to both continuous- and discrete-time FRDs.

Example z=tf('z',-1);
sys=(-.4*z -.1)/(z*2 + 1.05*z + .08)

Transfer function:

z*2 + 1.05 z + 0.08
Sampling time: unspecified

sys.InputDelay = 1;
sys = delay2z(sys)

Transfer function:

z*"3 + 1.05 z*2 + 0.08 z

Sampling time: unspecified

See Also hasdelay True for LTI models with delays
pade Pade approximation of time delays
totaldelay Combine delays for an LTI model
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Purpose

Syntax

Description

Limitations

See Also
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Design linear-quadratic (LQ) state-feedback regulator for discrete-time plant

[K,S,e] = dlgr(a,b,Q,R)
[K,S,e] = dlgr(a,b,Q,R,N)

[K,S,e] = dlgr(a,b,Q,R,N) calculates the optimal gain matrix K such that
the state-feedback law

u[n] = —-Kx[n]
minimizes the quadratic cost function
T T T
J(u) = > (x[n] " Qx[n] +u[n] "Ru[n] +2x[n] Nu[n])
n=1
for the discrete-time state-space mode
IXx[n+1] = Ax[n] + Bu[n]
The default value N=0 is assumed when N is omitted.
In addition to the state-feedback gain K, d1qr returns the infinite horizon
solution S of the associated discrete-time Riccati equation
-1
ATSA—S—_(A'SB+N)(B'SB+R) (B'SA+N")+Q =0
and the closed-loop eigenvalues e = eig(a-b*K). Note that K is derived from
S by
-1
K= (B'SB+R) (B'SA+N')

The problem data must satisfy:

= The pair (A, B) is stabilizable.

- R>0and Q—NRN">0.

- (Q- NRINT, A—BR_lNT) has no unobservable mode on the unit circle.

dare Solve discrete Riccati equations
lqgreg LQG regulator



diqgr

1gr State-feedback LQ regulator for continuous plant
1lqrd Discrete LQ regulator for continuous plant
lgry State-feedback LQ regulator with output weighting
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Purpose
Syntax

Description

Diagnostics

See Also
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Solve discrete-time Lyapunov equations
X = dlyap(A,Q)
dlyap solves the discrete-time Lyapunov equation

ATXA-X+Q =0
where A and Q are n-by-n matrices.
The solution X is symmetric when Q is symmetric, and positive definite when

Q is positive definite and A has all its eigenvalues inside the unit disk.

The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues
0y, Oy, ..., 0, of A satisfy o;a; # 1 for all (i, j) .

If this condition is violated, d1yap produces the error message

Solution does not exist or is not unique.

covar Covariance of system response to white noise
lyap Solve continuous Lyapunov equations
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Purpose Generate stable random discrete test models
Syntax sys = drss(n)
sys = drss(n,p)
sys = drss(n,p,m)
sys = drss(n,p,m,s1,...sn)
Description sys = drss(n) produces a random n-th order stable model with one input and

one output, and returns the model in the state-space object sys.

drss(n,p) produces a random n-th order stable model with one input and p
outputs.

drss(n,m,p) generates a random n-th order stable model with m inputs and p
outputs.

drss(n,p,m,s1,...sn) generates a sl-by—sn array of random n-th order

stable model with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has
an unspecified sampling time. To generate transfer function or zero-pole-gain
systems, convert sys using tf or zpk.

Example Generate a random discrete LTI system with three states, two inputs, and two
outputs.

sys = drss(3,2,2)

a =
X1 X2 x3
x1 0.38630 -0.21458 -0.09914
X2 -0.23390 -0.15220 -0.06572
x3 -0.03412 0.11394 -0.22618
b =
ui u2
x1 0.98833 0.51551
X2 0 0.33395
X3 0.42350 0.43291
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C =
X1 X2 x3
y1 0.22595 0.76037 0
y2 0 0 0
d =
ui u2
y1 0 0.68085
y2 0.78333 0.46110

Sampling time: unspecified
Discrete-time system.

See Also rss Generate stable random continuous test models
tf Convert LTI systems to transfer functions form
zpk Convert LTI systems to zero-pole-gain form
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Purpose

Syntax

Description

Example

Limitations

See Also

Sort discrete-time poles by magnitude

s = dsort(p)
[s,ndx] = dsort(p)

dsort sorts the discrete-time poles contained in the vector p in descending
order by magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s.

[s,ndx] = dsort(p) alsoreturns the vector ndx containing the indices used in
the sort.

Sort the following discrete poles.
p =

-0.2410 + 0.55731i

-0.2410 - 0.5573i

0.1503

-0.0972

-0.2590

s = dsort(p)

S:
-0.2410 + 0.5573i
-0.2410 - 0.55731
-0.2590
0.1503
-0.0972

The poles in the vector p must appear in complex conjugate pairs.

eig Calculate eigenvalues and eigenvectors
esort, sort Sort system poles

pole Compute system poles

pzmap Pole-zero map

zero Compute (transmission) zeros
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Purpose

Syntax

Description

Example
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Specify descriptor state-space models

sys = dss(a,b,c,d,e)
sys = dss(a,b,c,d,e,Ts)
sys = dss(a,b,c,d,e,ltisys)

sys = dss(a,b,c,d,e, 'Propertyl1',Valuel,..., 'PropertyN',ValueN)
sys = dss(a,b,c,d,e,Ts, 'Property1',vValuel,..., 'PropertyN',ValueN)

sys = dss(a,b,c,d,e) creates the continuous-time descriptor state-space
model

Ex = Ax+Bu
y = Cx+Du

The E matrix must be nonsingular. The output sys is an SS model storing the
model data (see “LTI Objects” on page 2-3). Note that ss produces the same
type of object. If the matrix D = 0, do can simply set d to the scalar 0 (zero).

sys = dss(a,b,c,d,e,Ts) creates the discrete-time descriptor model
Ex[n+1]
y[n]

with sample time Ts (in seconds).

Ax[n] + Bu[n]
Cx[n] + Du[n]

sys =dss(a,b,c,d,e,ltisys) creates a descriptor model with generic LTI
properties inherited from the LTI model 1tisys (including the sample time).
See “LTI Properties” on page 2-26 for an overview of generic LTI properties.

Any of the previous syntaxes can be followed by property name/property value
pairs

"Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See set and the example
below for details.

The command



dss

See Also

sys = dss(1,2,3,4,5,'td',0.1, 'inputname', 'voltage',...
‘notes', 'Just an example')

creates the model
5x = x+2u
y = 3x+4u

with a 0.1 second input delay. The input is labeled 'voltage', and a note is
attached to tell you that this is just an example.

dssdata Retrieve A, B, C, D, E matrices of descriptor model
get Get properties of LTI models

set Set properties of LTI models

ss Specify (regular) state-space models
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Purpose Quick access to descriptor state-space data

Syntax [a,b,c,d,e] = dssdata(sys)
[a,b,c,d,e,Ts] = dssdata(sys)

Description [a,b,c,d,e] = dssdata(sys) extracts the descriptor matrix data
(A, B, C, D, E) from the state-space model sys. If sys is a transfer function or
zero-pole-gain model, it is first converted to state space. Note that dssdata is
then equivalent to ssdata because it always returns E = 1.

[a,b,c,d,e,Ts] = dssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.notes
See Also dss Specify descriptor state-space models
get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data
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Purpose

Syntax

Description

Example

Limitations

See Also

Sort continuous-time poles by real part

s = esort(p)
[s,ndx] = esort(p)

esort sorts the continuous-time poles contained in the vector p by real part.
Unstable eigenvalues appear first and the remaining poles are ordered by
decreasing real parts.

When called with one left-hand argument, s = esort(p) returns the sorted
eigenvalues in s.

[s,ndx] = esort(p) returns the additional argument ndx, a vector containing
the indices used in the sort.

Sort the following continuous eigenvalues.

p

p:
-0.2410+ 0.55731
-0.2410- 0.5573i
0.1503
-0.0972
-0.2590

esort(p)

ans =
0.1503
-0.0972
-0.2410+ 0.55731i
-0.2410- 0.5573i
-0.2590

The eigenvalues in the vector p must appear in complex conjugate pairs.

dsort, sort Sort system poles

eig Calculate eigenvalues and eigenvectors
pole Compute system poles

pzmap Pole-zero map
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zero Compute (transmission) zeros
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Purpose

Syntax

Description

Form state estimator given estimator gain

est
est

estim(sys,L)
estim(sys,L,sensors,known)

est = estim(sys,L) produces a state/output estimator est given the plant
state-space model sys and the estimator gain L. All inputs w of sys are
assumed stochastic (process and/or measurement noise), and all outputs y are
measured. The estimator est is returned in state-space form (SS object). For a
continuous-time plant sys with equations

X = Ax+Bw
y = Cx+Dw

estim generates plant output and state estimates y and X as given by the
following model.

~

X = AX+L(y—Cx)

Al

The discrete-time estimator has similar equations.

est = estim(sys,L,sensors,known) handles more general plants sys with
both known inputs u and stochastic inputs w, and both measured outputs y
and nonmeasured outputs z.

X:Ax+Blw+ Bzu

H: Clx+ D11W+ Dlzu
Yy C, Dy Dy,

The index vectors sensors and known specify which outputs y are measured
and which inputs u are known. The resulting estimator est uses both u and
y to produce the output and state estimates.
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Example

See Also
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x
1

AX+B,u +L(y—Cyx—D,,u)

- [l

ro .1
X <>

<>

u (known) — p» I
est

f

y (sensors) — p»

estim handles both continuous- and discrete-time cases. You can use the
functions place (pole placement) or kalman (Kalman filtering) to design an
adequate estimator gain L . Note that the estimator poles (eigenvalues of

A —LC) should be faster than the plant dynamics (eigenvalues of A) to ensure
accurate estimation.

Consider a state-space model sys with seven outputs and four inputs. Suppose
you designed a Kalman gain matrix L using outputs 4, 7, and 1 of the plant as
sensor measurements, and inputs 1,4, and 3 of the plant as known
(deterministic) inputs. You can then form the Kalman estimator by

sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)

See the function kalman for direct Kalman estimator design.

kalman Design Kalman estimator

place Pole placement

reg Form regulator given state-feedback and estimator
gains
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Purpose
Syntax

Description

Example

Limitations

See Also

Evaluate frequency response at a single (complex) frequency
frsp = evalfr(sys,T)

frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS, or ZPK
model sys at the complex number f. For state-space models with data
(A, B, C, D), the result is

H(f) = D+C(fl—-A)'B

evalfr is a simplified version of freqresp meant for quick evaluation of the
response at a single point. Use freqresp to compute the frequency response
over a set of frequencies.

To evaluate the discrete-time transfer function
z-1

2
z +z+1

H(z) =

atz = 1+j, type

H=tf([1 -1],[1 1 1],-1)
z = 1+4j
evalfr(H,z)

ans =
2.3077e-01 + 1.5385e-011

The response is not finite when f is a pole of sys.

bode Bode frequency response
freqresp Frequency response over a set of frequencies
sigma Singular value response
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Purpose

Syntax

Description
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Feedback connection of two LTI models

sys = feedback(sys1,sys2)
sys = feedback(sysi1,sys2,sign)
sys = feedback(sys1,sys2,feedin,feedout,sign)

sys = feedback(sys1,sys2) returns an LTI model sys for the negative
feedback interconnection.

u ) P  sysi Y

The closed-loop model sys has u as input vector and y as output vector. The
LTI models sys1 and sys2 must be both continuous or both discrete with
identical sample times. Precedence rules are used to determine the resulting
model type (see Precedence Rules).

To apply positive feedback, use the syntax
sys = feedback(sysl,sys2,+1)

By default, feedback (sys1,sys2) assumes negative feedback and is
equivalent to feedback(sys1,sys2,-1).

Finally,
sys = feedback(sys1,sys2,feedin,feedout)



feedback

Remark

computes a closed-loop model sys for the more general feedback loop.

The vector feedin contains indices into the input vector of sys1 and specifies
which inputs u are involved in the feedback loop. Similarly, feedout specifies
which outputs y of sys1 are used for feedback. The resulting LTI model sys has
the same inputs and outputs as sys1 (with their order preserved). As before,
negative feedback is applied by default and you must use

sys = feedback(sysi1,sys2,feedin,feedout,+1)
to apply positive feedback.

For more complicated feedback structures, use append and connect.

You can specify static gains as regular matrices, for example,
sys = feedback(sys1,2)

However, at least one of the two arguments sys1 and sys2 should be an LTI
object. For feedback loops involving two static gains k1 and k2, use the syntax

sys = feedback(tf(k1),k2)
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Examples Example 1

+
torque —»i G velocity
H

To connect the plant

2
2s"+5s+1
G(s) = =—>—
s +2s+3

with the controller

using negative feedback, type

G = tf([2 5 1],[1 2 3], 'inputname', 'torque’,...
"outputname’', 'velocity');

H = zpk(-2,-10,5)

Cloop = feedback(G,H)

and MATLAB returns

Zero/pole/gain from input "torque" to output "velocity":
0.18182 (s+10) (s+2.281) (s+0.2192)

(s+3.419) (s"2 + 1.763s + 1.064)

The result is a zero-pole-gain model as expected from the precedence rules.
Note that Cloop inherited the input and output names from G.
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Limitations

See Also

Example 2

Consider a state-space plant P with five inputs and four outputs and a
state-space feedback controller K with three inputs and two outputs. To connect
outputs 1, 3, and 4 of the plant to the controller inputs, and the controller
outputs to inputs 4 and 2 of the plant, use

feedin = [4 2];
feedout = [1 3 4];
Cloop = feedback(P,K,feedin,feedout)

Example 3
You can form the following negative-feedback loops

—»(O—» G - > |

i

by

Cloop feedback (G, 1) % left diagram
Cloop = feedback(1,G) % right diagram

The feedback connection should be free of algebraic loop. If D, and D, are the
feedthrough matrices of sys1 and sys2, this condition is equivalent to:

= | + D, D, nonsingular when using negative feedback
= | -D;D, nonsingular when using positive feedback.

series Series connection
parallel Parallel connection
connect Derive state-space model for block diagram

interconnection
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Purpose

Syntax

Description

Arguments
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Specify discrete transfer functions in DSP format

sys = filt(num,den)

sys = filt(num,den,Ts)

sys = filt(M)

sys = filt(num,den, 'Property1',Valuel,..., 'PropertyN',ValueN)
sys = filt(num,den,Ts, 'Propertyil',Valuel,..., 'PropertyN',ValueN)

In digital signal processing (DSP), it is customary to write transfer functions
as rational expressions in z aTd to order the numerator and denominator
terms in ascending powers of z —, for example,

-1
-1 2+

) =
1+04z t+2772

H(z

The function filt is provided to facilitate the specification of transfer functions
in DSP format.

sys = filt(num,den) creates a discrete-time transfer function sys with
numerator(s) num and denominator(s) den. The sample time is left unspecified
(sys.Ts = -1) and the output sys is a TF object.

sys = filt(num,den,Ts) further specifies the sample time Ts (in seconds).

sys = filt (M) specifies a static filter with gain matrix M.

Any of the previous syntaxes can be followed by property name/property value
pairs of the form

"Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See LTI Properties and the set
entry for additional information on LTI properties and admissible property
values.

For SISO transfer functions, num and den are row vectors containing the
numerator and denominator coefficients ordered in ascending powers of z_2 .
For example, den = [1 0.4 2] represents the polynomial 1+0.4z =~ +2z .
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Remark

Example

See Also

MIMO transfer functions are regarded as arrays of SISO transfer functions
(one per 1/0 channel), each of which is characterized by its numerator and
denominator. The input arguments num and den are then cell arrays of row
vectors such that:

= num and den have as many rows as outputs and as many columns as inputs.
<« Their (i, j) entries num{i,j} and den{1i, j} specify the numerator and
denominator of the transfer function from input j to output i.

If all SISO entries have the same denominator, you can also set den to the row
vector representation of this common denominator. See also MIMO Transfer
Function Models for alternative ways to specify MIMO transfer functions.

filt behaves as tf with the Variable property setto 'z*-1'or 'q'. See tf
entry below for details.

Typing the commands

num = {1 , [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den, 'inputname’', {'channel1’ 'channel2'})

creates the two-input digital filter

-1
H(Z_l) — 1 1+0.3z
1+7 427 5+27 ¢

with unspecified sample time and input names 'channeli' and 'channel2'.

tf Create transfer functions
zpk Create zero-pole-gain models
SSs Create state-space models
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Purpose

Syntax

Description
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Create a frequency response data (FRD) object or convert another model type
to an FRD model

sys = frd(response,frequency)

sys = frd(response,frequency,Ts)

sys = frd

sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency)
sysfrd = frd(sys,frequency, 'Units',units)

sys = frd(response,frequency) creates an FRD model sys from the
frequency response data stored in the multidimensional array response. The
vector frequency represents the underlying frequencies for the frequency
response data. See Table 5-1, Data Format for the Argument response in FRD
Models.

sys = frd(response,frequency,Ts) creates a discrete-time FRD model sys
with scalar sample time Ts. Set Ts = -1 to create a discrete-time FRD model
without specifying the sample time.

sys = frd creates an empty FRD model.

The input argument list for any of these syntaxes can be followed by property
name/property value pairs of the form

'PropertyName’',PropertyValue

You can use these extra arguments to set the various properties of FRD models
(see the set command, or LTI Properties and Model-Specific Properties). These
properties include 'Units'. The default units for FRD models are in 'rad/s".

To force an FRD model sys to inherit all of its generic LTI properties from any
existing LTI model refsys, use the syntax

sys = frd(response,frequency,ltisys)

sysfrd = frd(sys,frequency) converts a TF, SS, or ZPK model to an FRD
model. The frequency response is computed at the frequencies provided by the
vector frequency.



frd

Arguments

Remarks

Example

See Also

sysfrd = frd(sys,frequency, 'Units',units)converts an FRD model from a
TF, SS, or ZPK model while specifying the units for frequency to be units
(‘rad/s' or 'Hz').

When you specify a SISO or MIMO FRD model, or an array of FRD models, the
input argument frequency is always a vector of length Nf, where Nf is the
number of frequency data points in the FRD. The specification of the input
argument response is summarized in the following table.

Table 5-1: Data Format for the Argument response in FRD Models

Model Form Response Data Format
SISO model Vector of length Nf for which response (i) is the
frequency response at the frequency frequency (i)
MIMO model Ny-by-Nu-by-Nf multidimensional array for which
with Ny outputs response(i,j,k) specifies the frequency response
and Nu inputs from input j to output i at frequency frequency (k)
S1-by-...-by-Sn Multidimensional array of size [Ny Nu S1 ... Sn] for
array of models which response (i, j,k, :) specifies the array of
with Ny outputs frequency response data from input j to output i at
and Nu inputs frequency frequency (k)

See Frequency Response Data (FRD) Models for more information on single
FRD models, and Creating LTI Models for information on building arrays of
FRD models.

Type the commands

freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)

to create a SISO FRD model.

chgunits Change units for an FRD model
frdata Quick access to data for an FRD model
set Set the properties for an LTI model

ss Create state-space models
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tf Create transfer functions
zpk Create zero-pole-gain models
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Purpose

Syntax

Description

Arguments

Example

Quick access to data for a frequency response data object

[response,freq] = frdata(sys)
[response,freq,Ts] = frdata(sys)
[response,freq] = frdata(sys,'v')

[response,freq] = frdata(sys) returns the response data and frequency
samples of the FRD model sys. For an FRD model with Ny outputs and Nu
inputs at Nf frequencies:

=« response is an Ny-by-Nu-by-Nf multidimensional array where the (i,j)
entry specifies the response from input j to output i.

= freq is a column vector of length Nf that contains the frequency samples of
the FRD model.

See Table 11-14, “Data Format for the Argument response in FRD Models,” on
page 80 for more information on the data format for FRD response data.

For SISO FRD models, the syntax
[response,freq] = frdata(sys,'v')

forces frdata to return the response data and frequencies directly as column
vectors rather than as cell arrays (see example below).

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.
Other properties of sys can be accessed with get or by direct structure-like
referencing (e.g., sys.units).

The input argument sys to frdata must be an FRD model.

Typing the commands

freq = logspace(1,2,2);

resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq);

[resp,freq] = frdata(sys,'v')

returns the FRD model data

resp =
0.2040 + 0.45651

5-85



frdata

2.4359 - 4.3665i

freq =
10
100
See Also frd Create or convert to FRD models
get Get the properties for an LTI model
set Set model properties
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Purpose
Syntax

Description

Remark

Arguments

Example

Compute frequency response over grid of frequencies

H freqresp(sys,w)

H = freqgresp(sys,w) computes the frequency response of the LTI model sys
at the real frequency points specified by the vector w. The frequencies must be
in radians/sec. For single LTI Models, freqresp(sys,w) returns a 3-D array H
with the frequency as the last dimension (see “Arguments” below). For LTI
arrays of size [Ny Nu S1 ... Sn], freqresp(sys,w) returns a
[Ny-by-Nu-by-S1-by-...-by-Sn] length (w) array.

In continuous time, the response at a frequency wis the transfer function value
at s = jw. For state-space models, this value is given by
H(jw) = D+C(jwl —A) B

In discrete time, the real frequenciesw(1),,..

w‘rW(N) are mapped to points on the
unit circle using the transformation z = e

where T, is the sample time. The transfer function is then evaluated at the
resulting z values. The default T, = 1 is used for models with unspecified
sample time.

If sys is an FRD model, freqresp(sys,w), w can only include frequencies in
sys.frequency. Interpolation and extrapolation are not supported. To
interpolate an FRD model, use interp.

The output argument H is a 3-D array with dimensions
(number of outputs) x (number of inputs) x (length of w)

For SISO systems, H(1,1,k) gives the scalar response at the frequency w(k).
For MIMO systems, the frequency response atw(k) iSH(:, :,k), a matrix with
as many rows as outputs and as many columns as inputs.

Compute the frequency response of
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1
0 —_
P(s) = s+1
s—1
S+2 1

at the frequencies w = 1,10, 100. Type

w = [110 100]
H = freqresp(P,w)
H(:y:,1) =
0 0.5000- 0.5000i
-0.2000+ 0.60001 1.0000
H(:y:,2) =
0 0.0099- 0.0990i
0.9423+ 0.28851 1.0000
H(:y:,3) =

0 0.0001- 0.01001
0.9994+ 0.03001 1.0000

The three displayed matrices are the values of P(jw) for

w =1, w = 10, w = 100
The third index in the 3-D array H is relative to the frequency vector w, so you
can extract the frequency response at w = 10 rad/sec by

H(:,:,w==10)

ans =

0 0.0099- 0.0990i
0.9423+ 0.28851 1.0000
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Algorithm

Diagnostics

See Also

References

For transfer functions or zero-pole-gain models, freqresp evaluates the
numerator(s) and denominator(s) at the specified frequency points. For
continuous-time state-space models (A, B, C, D), the frequency response is

D +C(jw—A)_lB , W= W, .., W

For efficiency, A is reduced to upper Hessenberg form and the linear
equation (jw—A)X = B issolved at each frequency point, taking advantage
of the Hessenberg structure. The reduction to Hessenberg form provides a good
compromise between efficiency and reliability. See [1] for more details on this
technique.

If the system has a pole on the jw axis (or unit circle in the discrete-time case)
and w happens to contain this frequency point, the gain is infinite, jwl —A is
singular, and freqresp produces the following warning message.

Singularity in freq. response due to jw-axis or unit circle pole.

evalfr Response at single complex frequency

bode Bode plot

nyquist Nyquist plot

nichols Nichols plot

sigma Singular value plot

ltiview LTI system viewer

interp Interpolate FRD model between frequency points

[1] Laub, A.J., “Efficient Multivariable Frequency Response Computations,”
IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.
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Purpose

Syntax

Description

Example
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Generate test input signals for 1sim

[u,t] = gensig(type,tau)
[u,t] = gensig(type,tau,Tf,Ts)

[u,t] = gensig(type,tau) generates a scalar signal u of class type and with
period tau (in seconds). The following types of signals are available.

type = 'sin' Sine wave.
type = 'square' Square wave.
type = 'pulse’ Periodic pulse.

gensig returns a vector t of time samples and the vector u of signal values at
these samples. All generated signals have unit amplitude.

[u,t] = gensig(type,tau,Tf,Ts) also specifies the time duration Tf of the
signal and the spacing Ts between the time samples t.

You can feed the outputs u and t directly to 1sim and simulate the response of
a single-input linear system to the specified signal. Since t is uniquely
determined by Tf and Ts, you can also generate inputs for multi-input systems
by repeated calls to gensig.

Generate a square wave with period 5 seconds, duration 30 seconds, and
sampling every 0.1 seconds.

[u,t] = gensig('square',5,30,0.1)
Plot the resulting signal.

plot(t,u)



gensig

axis([0 30 -1 2])

See Also lsim Simulate response to arbitrary inputs
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Purpose

Syntax

Description

Example
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Access/query LTI property values

Value = get(sys, 'PropertyName')
get(sys)
Struct = get(sys)

Value = get(sys, 'PropertyName') returns the current value of the property
PropertyName of the LTI model sys. The string 'PropertyName' can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). You can specify any generic LTI property,
or any property specific to the model sys (see “LTI Properties” for details on
generic and model-specific LTI properties).

Struct = get(sys) converts the TF, SS, or ZPK object sys into a standard
MATLAB structure with the property names as field names and the property
values as field values.

Without left-hand argument,
get(sys)

displays all properties of sys and their values.

Consider the discrete-time SISO transfer function defined by
h =tf(1,[1 2],0.1, " 'inputname', 'voltage', 'user', 'hello"')

You can display all LTI properties of h with

get(h)
num = {[0 1]}
den = {[1 2]}
Variable = 'z'
Ts = 0.1

InputDelay = 0
OutputDelay = 0

ioDelay = 0

InputName = {'voltage'}
OutputName = {''}
InputGroup = {0x2 cell}
OutputGroup = {0x2 cell}



get

Remark

See Also

Notes = {}
UserData = 'hello’
or query only about the numerator and sample time values by

get(h, 'num")

ans =
[1x2 double]

and
get(h,"'ts")

ans =
0.1000

Because the numerator data (num property) is always stored as a cell array, the
first command evaluates to a cell array containing the row vector [0 1].
An alternative to the syntax
Value = get(sys, 'PropertyName')
is the structure-like referencing
Value = sys.PropertyName
For example,

sys.Ts
sys.a
sys.user

return the values of the sample time, A matrix, and UserData property of the
(state-space) model sys.

frdata Quick access to frequency response data
set Set/modify LTI properties

ssdata Quick access to state-space data

tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data
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Purpose
Syntax

Description
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Compute controllability and observability state-space
models:descriptor;state-space models:quick data retrievalgrammians

Wc
Wo

gram(sys,'c')
gram(sys,'o')

gram calculates controllability and observability grammians. You can use
grammians to study the controllability and observability properties of
state-space models and for model reduction [1,2]. They have better numerical
properties than the controllability and observability matrices formed by ctrb
and obsv.

Given the continuous-time state-space model

X = Ax+Bu
y = Cx+Du

the controllability grammian is defined by
W, = I BB e Tdt
0
and the observability grammian by

0

.
W, = [ ¢* 'cTce™ar
0

The discrete-time counterparts are

T ko oT ATk STk Tk
WC:ZABB(A), WO:Z(A)CCA
k=0 k=0

The controllability grammian is positive definite if and only if (A, B) is
controllable. Similarly, the observability grammian is positive definite if and
only if (C, A) is observable.

Use the commands

We
Wo

gram(sys,'c') % controllability grammian
gram(sys, 'o') % observability grammian



gram

Algorithm

Limitations

See Also

References

to compute the grammians of a continuous or discrete system. The LTI model
sys must be in state-space form.

The controllability grammian W, is obtained by solving the continuous-time
Lyapunov equation

AW, +W.AT+BB' =0
or its discrete-time counterpart
AWAT-w_+BB" = 0
Similarly, the observability grammianW, solves the Lyapunov equation
ATw,+W,A+C'C = 0
in continuous time, and the Lyapunov equation
ATWA-w, +C'C =0
in discrete time.

The A matrix must be stable (all eigenvalues have negative real part in
continuous time, and magnitude strictly less than one in discrete time).

balreal Grammian-based balancing of state-space realizations
ctrb Controllability matrix

lyap, dlyap Lyapunov equation solvers

obsv Observability matrix

[1] Kailath, T., Linear Systems, Prentice-Hall, 1980.
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Purpose
Syntax

Description

See Also
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Test if an LTI model has time delays
hasdelay(sys)

hasdelay(sys) returns 1 (true) if the LTI model sys has input delays, output
delays, or 1/0O delays, and 0 (false) otherwise.

delay2z Changes transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information
totaldelay Combines delays for an LTI model



impulse

Purpose

Syntax

Description

Compute the impulse response of LTI models

impulse(sys)
impulse(sys,t)

impulse(sysi,sys2,...,sysN)
impulse(sysi1,sys2,...,sysN,t)
impulse(sysi, 'PlotStylet1',...,sysN, 'PlotStyleN')

[y,t,x] = impulse(sys)

impulse calculates the unit impulse response of a linear system. The impulse
response is the response to a Dirac input d(t) for continuous-time systems and
toaunitpulseatt = O for discrete-time systems. Zero initial state is assumed
in the state-space case. When invoked without left-hand arguments, this
function plots the impulse response on the screen.

impulse(sys) plots the impulse response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. The impulse response
of multi-input systems is the collection of impulse responses for each input
channel. The duration of simulation is determined automatically to display the
transient behavior of the response.

impulse(sys,t) sets the simulation horizon explicitly. You can specify either
afinal time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the impulse responses of several LTI models sys1,..., sysN on a single
figure, use

impulse(sysi1,sys2,...,sysN)
impulse(sysi,sys2,...,sysN,t)
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As with bode or plot, you can specify a particular color, linestyle, and/or
marker for each system, for example,

impulse(sysi,'y:',sys2,'g--")

See “Plotting and Comparing Multiple Systems” on and the bode entry in this
chapter for more details.

When invoked with lefthand arguments,

[y,t] = impulse(sys)
[y,t,x] = impulse(sys) % for state-space models only
y = impulse(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the impulse
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

(length of t) x (number of outputs) x (number of inputs)

andy(:,:,j) gives the response to an impulse disturbance entering the jth
input channel. Similarly, the dimensions of x are

(length of t) x (number of states) x (number of inputs)

Example To plot the impulse response of the second-order state-space model

X1| _ |-0.5572 -0.7814||X1| , |1 -1||Us
Xy 0.7814 0 X, [0 2]|uy

y=[1.9691 6.4493] |i1]
2

use the following commands.

QO
|

= [-0.5572 -0.7814;0.7814 0];
[1 -1;0 2];
c = [1.9691 6.4493];

(o3
I}
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sys = ss(a,b,c,0);
impulse(sys)

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Dsda/ "A A/ ®BpD0

Impulze Response
From: U1 From: L2)

Amplitude:
Ta: %10

| | | | | |
1] 5] 10 15 200 5] 10 15 20
Time (zec)

The left plot shows the impulse response of the first input channel, and the
right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by
[y,t] = impulse(sys)
Because this system has two inputs, y is a 3-D array with dimensions

size(y)

101 1 2

(the first dimension is the length of t). The impulse response of the first input
channel is then accessed by

y(:,:,1)
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Algorithm

Limitations

See Also
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Continuous-time models are first converted to state space. The impulse
response of a single-input state-space model

X = Ax+bu
y = Cx

is equivalent to the following unforced response with initial state b.

X = Ax, x(0) = b
y = Cx

To simulate this response, the system is discretized using zero-order hold on

the inputs. The sampling period is chosen automatically based on the system
dynamics, except when a time vector t = 0:dt:Tf is supplied (dt is then used
as sampling period).

The impulse response of a continuous system with nonzero D matrix is infinite
att = 0. impulse ignores this discontinuity and returns the lower continuity
value Cb att = 0.

ltiview LTI system viewer

step Step response

initial Free response to initial condition
1sim Simulate response to arbitrary inputs



initial

Purpose

Syntax

Description

Compute the initial condition response of state-space models

initial(sys,x0)
initial(sys,x0,t)

initial(sysi1,sys2,...,sysN,x0)
initial(sys1,sys2,...,sysN,x0,t)
initial(sys1, 'PlotStylet1',...,sysN, 'PlotStyleN',x0)

[y,t,x] = initial(sys,x0)

initial calculates the unforced response of a state-space model with an initial
condition on the states.

X = Ax, x(0) = xq
y = Cx

This function is applicable to either continuous- or discrete-time models. When
invoked without lefthand arguments, initial plots the initial condition
response on the screen.

initial(sys,x0) plots the response of sys to an initial condition x0 on the
states. sys can be any state-space model (continuous or discrete, SISO or
MIMO, with or without inputs). The duration of simulation is determined
automatically to reflect adequately the response transients.

initial(sys,x0,t) explicitly sets the simulation horizon. You can specify
either a final time t = Tfinal (in seconds), or a vector of evenly spaced time
samples of the form

t = 0:dt:Tfinal
For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation

model (see impulse), so make sure to choose dt small enough to capture
transient phenomena.

To plot the initial condition responses of several LTI models on a single figure,
use
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initial(sys1,sys2,...,sysN,x0)
initial(sysi1,sys2,...,sysN,x0,t)

(see impulse for details).

When invoked with lefthand arguments,

[y,t,x] initial(sys,x0)
[y,t,x] = initial(sys,x0,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x. No plot is drawn on the screen. The array y has as many
rows as time samples (length of t) and as many columns as outputs. Similarly,
x has length(t) rows and as many columns as states.

Example Plot the response of the state-space model

X1| _ |-0.5572 -0.7814||X1
X, 0.7814 0 X,

y=[1.9691 6.4493) [ili
2

to the initial condition

x(0) = H
0

a = [-0.5572 -0.7814;0.7814 O0];
c = [1.9691 6.4493];
x0 = [1 ; 0]

sys = ss(a,[],¢,[1);

5-102



initial(sys,x0)
<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

nsE& YA~/ 220

Responze to Initial Conditions

EF
_2 1 1 1 1 1 1 1 1 1
1] 2 4 = g 10 12 14 16 18 20
Time (zec)
See Also impulse Impulse response

1sim Simulate response to arbitrary inputs
ltiview LTI system viewer

step Step response
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Purpose

Syntax
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Interpolate an FRD model between frequency points

isys = interp(sys,freqs) interpolates the frequency response data
contained in the FRD model sys at the frequencies freqgs. interp, which is an
overloaded version of the MATLAB function interp, uses linear interpolation
and returns an FRD model isys containing the interpolated data at the new
frequencies fregs.

You should express the frequency values fregs in the same units as
sys.frequency. The frequency values must lie between the smallest and
largest frequency points in sys (extrapolation is not supported).

freqresp Frequency response of LTI models
Itimodels Help on LTI models



inv

Purpose Invert LTI systems

Syntax isys = inv(sys)

Description inv inverts the input/output relation
y = G(s)u

to produce the LTI system with the transfer matrix H(s) = G(s)_l.
u = H(s)y

This operation is defined only for square systems (same number of inputs and
outputs) with an invertible feedthrough matrix D . inv handles both
continuous- and discrete-time systems.

Example Consider

1
Hes) = |1 s+
0 1
At the MATLAB prompt, type

H=[1tf(1,[1 11);0 1]
Hi = inv(H)

to invert it. MATLAB returns

Transfer function from input 1 to output...
#1: 1

#2: 0
Transfer function from input 2 to output...

#1r -----

#2: 1

You can verify that
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Limitations
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H * Hi

is the identity transfer function (static gain I).

Do not use inv to model feedback connections such as

+
—> G

While it seems reaionable to evaluate the corresponding closed-loop transfer
function (1 + GH) "G as

inv(1+g*h) * g
this typically leads to nonminimal closed-loop models. For example,

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * ¢

yields a third-order closed-loop model with an unstable pole-zero cancellation
ats=1.

cloop
Zero/pole/gain:

s (s-1)

Use feedback to avoid such pitfalls.

cloop = feedback(g,h)

Zero/pole/gain:



Isct, isdt

Purpose

Syntax

Description

See Also

Determine whether an LTI model is continuous or discrete

boo
boo

isct(sys)
isdt(sys)

boo = isct(sys) returns 1 (true) if the LTI model sys is continuous and 0
(false) otherwise. sys is continuous if its sample time is zero, that is, sys.Ts=0.

boo = isdt(sys) returns 1 (true) if sys is discrete and 0 (false) otherwise.
Discrete-time LTI models have a nonzero sample time, except for empty models
and static gains, which are regarded as either continuous or discrete as long as
their sample time is not explicitly set to a nonzero value. Thus both

isct(tf(10))
isdt(tf(10))

are true. However, if you explicitly label a gain as discrete, for example, by
typing
g = tf(10,'ts',0.01)

isct(g) now returns false and only isdt(g) is true.

isa Determine LTI model type
isempty True for empty LTI models
isproper True for proper LTI models
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Purpose Test if an LTI model is empty
Syntax boo = isempty(sys)
Description isempty(sys) returns 1 (true) if the LTI model sys has no input or no output,

and 0 (false) otherwise.

Example Both commands

isempty(tf) % tf by itself returns an empty transfer function
isempty(ss(1,2,[]1,[1))

return 1 (true) while
isempty(ss(1,2,3,4))

returns 0 (false).

See Also issiso True for SISO systems
size I/0 dimensions and array dimensions of LTI models
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Purpose
Syntax

Description

Example

Test if an LTI model is proper
boo = isproper(sys)

isproper(sys) returns 1 (true) if the LTI model sys is proper and 0 (false)
otherwise.

State-space models are always proper. SISO transfer functions or
zero-pole-gain models are proper if the degree of their numerator is less than
or equal to the degree of their denominator. MIMO transfer functions are
proper if all their SISO entries are proper.

The following commands

isproper(tf([1 0],1)) %
isproper(tf([1 O],[1 11)) %

ransfer function s

t
transfer function s/ (s+1)

return false and true, respectively.
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Purpose Test if an LTI model is single-input/single-output (SISO)

Syntax boo = issiso(sys)

Description issiso(sys) returns 1 (true) if the LTI model sys is SISO and 0 (false)
otherwise.

See Also isempty True for empty LTI models
size I/0 dimensions and array dimensions of LTI models
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Purpose

Syntax

Description

Design continuous- or discrete-time Kalman estimator

[kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn) % discrete time only
[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)

kalman designs a Kalman state estimator given a state-space model of the
plant and the process and measurement noise covariance data. The Kalman
estimator is the optimal solution to the following continuous or discrete
estimation problems.

Continuous-Time Estimation

Given the continuous plant

X =Ax+Bu+Gw (state equation)
yy = Cx+Du+Hw+v (measurement equation)

with known inputs u and process and measurement white noise w, v
satisfying

E(w) = E(v) =0, EMww')=Q, E(W')=R, E(wv')=N

construct a state estimate f((t) that minimizes the steady-state error
covariance

P = lim E({x-x}{x-x}")

The optimal solution is the Kalman filter with equations

X = AX +Bu +L(y, —Cx—Du)

3:’ = |Clx+|Plu

X | 0
where the filter gain L is determined by solving an algebraic Riccati equation.
This estimator uses the known inputs u and the measurements y,, to generate
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the output and state estimates y and x. Note that y estimates the true plant
output

y = Cx+Du+Hw

- Kalman —»

filter | g
u —L g Yo
Plant ——®»O

W —p y ?;,

X <>

vV (Measurement noise)

Kalman estimator

Discrete-Time Estimation

Given the discrete plant

x[n+1] = Ax[n] +Bu[n] + Gw[n]
yy[n] = Cx[n] + Du[n] + HW[n] +v[n]

and the noise covariance data
T T T
E(w[n]w[n] ") =Q, E(v[n]v[n] ) =R, E(w[n]v[n]")=N
the Kalman estimator has equations

x[n+1|n]

AX[n|n—1] + Bu[n] + L(y,[n] = CX[n|n—1] = Du[n])

yinn]| _ {C(I—MC)} ;([n|n_1]+[(l—CM)D CM} u[n]
x[n|n] I-MC -MD M ||Y,[n]
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Usage

and generates optimal “current” output and state estimates y|n|n] and x|n|n]|
using all available measurements including y, [n]. The gain matrices L and
M are derived by solving a discrete Riccati equation. The innovation gain M
is used to update the prediction f([n|n —1] using the new measurement y, [Nn].

x[n|n] =x[n|n—=1] + M(y,[n] —Cx[n|n—1] —Du[n])
o )
innovation

[kest,L,P] = kalman(sys,Qn,Rn,Nn) returns a state-space model kest of the
Kalman estimator given the plant model sys and the noise covariance data Qn,
Rn, Nn (matrices Q, R, N above). sys must be a state-space model with matrices

A [B G|, c [DH]

The resulting estimator kest has [u ;y,] as inputs and [y :X] (or their
discrete-time counterparts) as outputs. You can omit the last input argument
Nnwhen N = 0.

The function kalman handles both continuous and discrete problems and
produces a continuous estimator when sys is continuous, and a discrete
estimator otherwise. In continuous time, kalman also returns the Kalman gain
L and the steady-state error covariance matrix P. Note that P is the solution of
the associated Riccati equation. In discrete time, the syntax

[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn)

returns the filter gain L and innovations gain M, as well as the steady-state
error covariances

P = lim E(e[n|n—1]e[n|n—1]T) , e[n|n—-1] = x[n] —=x[n|n-1]

n - oo

Z = lim E(e[n|n]e[n|n]T) , e[n|n] = x[n] —x[n|n]
n - oo
Finally, use the syntaxes

[kest,L,P] = kalman(sys,Qn,Rn,Nn,sensors,known)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn,sensors,known)
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Example

Limitations

See Also

References

5-114

for more general plants sys where the known inputs u and stochastic inputs
w are mixed together, and not all outputs are measured. The index vectors
sensors and known then specify which outputs y of sys are measured and
which inputs u are known. All other inputs are assumed stochastic.

See LQG Design for the x-Axis and Kalman Filtering for examples that use the
kalman function.

The plant and noise data must satisfy:

= (C, A) detectable
-R>0and Q-NR 'N' 20
——1 = ——1_T . .
< (A—NR "C,Q-NR "N ) has no uncontrollable mode on the imaginary
axis (or unit circle in discrete time)

with the notation

Q=GQG'
R=R+HN+N H' +HQH"
N=G(QH' +N)

care Solve continuous-time Riccati equations

dare Solve discrete-time Riccati equations

estim Form estimator given estimator gain

kalmd Discrete Kalman estimator for continuous plant
lqgreg Assemble LQG regulator

1gr Design state-feedback LQ regulator

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.
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Purpose
Syntax

Description

Limitations

See Also

Design discrete Kalman estimator for continuous plant
[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

kalmd designs a discrete-time Kalman estimator that has response
characteristics similar to a continuous-time estimator designed with kalman.
This command is useful to derive a discrete estimator for digital
implementation after a satisfactory continuous estimator has been designed.

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts) produces a discrete Kalman
estimator kest with sample time Ts for the continuous-time plant

X =AXx+Bu+Gw (state equation)
y,=Cx+Du+v (measurement equation)

with process noise w and measurement noise v satisfying

E(w) =E(v) =0, Eww')=Q,, E(w')=R,, Ewv')=0

n

The estimator kest is derived as follows. The continuous plant sys is first
discretized using zero-order hold with sample time Ts (see c2d entry), and the
continuous noise covariance matrices Q, and R, are replaced by their discrete
equivalents

T T
s A T A
Qd:IO eM'GQG e Tdt

Ry=R/T,

The integral is computed using the matrix exponential formulas in [2]. A
discrete-time estimator is then designed for the discretized plant and noise. See
kalman for details on discrete-time Kalman estimation.

kalmd also returns the estimator gains L and M, and the discrete error
covariance matrices P and Z (see kalman for details).

The discretized problem data should satisfy the requirements for kalman.

kalman Design Kalman estimator
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lqgreg Assemble LQG regulator
lqrd Discrete LQ-optimal gain for continuous plant

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1990.

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.
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Purpose

Syntax

Description

Redheffer star product (linear fractional transformation) of two LTI models

sys
sys

1ft(sysi1,sys2)
1ft(sys1,sys2,nu,ny)

1ft forms the star product or linear fractional transformation (LFT) of two LTI
models or LTI arrays. Such interconnections are widely used in robust control
techniques.

sys = 1ft(sys1,sys2,nu,ny) forms the star product sys of the two LTI
models (or LTI arrays) sys1 and sys2. The star product amounts to the
following feedback connection for single LTI models (or for each model in an
LTI array).

Sys
2 — > 7,
sysi
u y
y u
sys2
W2—4> - 22

This feedback loop connects the first nu outputs of sys2 to the last nu inputs of
sys1 (signals u), and the last ny outputs of sys1 to the first ny inputs of sys2
(signals y). The resulting system sys maps the input vector [w, ; w,] to the
output vector [z, ; z,] .

The abbreviated syntax

sys = 1ft(sysi1,sys2)

5-117



Ift

produces:

= The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than

sys1. This amounts to deleting w, and z, in the above diagram.

= The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than

sys2. This amounts to deleting w; and z; in the above diagram.

Wy
-

sysi

Z)
.

sys2

Lower LFT connection

Algorithm
Limitations
See Also connect

feedback

5-118

sys1

sys2

4>

There should be no algebraic loop in the feedback connection.

Derive state-space model for block diagram
interconnection
Feedback connection

Zy

Upper LFT connection

The closed-loop model is derived by elementary state-space manipulations.
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Purpose

Syntax

Description

Form LQG regulator given state-feedback gain and Kalman estimator

rlgqg = lqgreg(kest,k)
rlgqg = lqgreg(kest,k, 'current') % discrete-time only
rlgg = lqgreg(kest,k,controls)

lggreg forms the LQG regulator by connecting the Kalman estimator designed
with kalman and the optimal state-feedback gain designed with 1qr, d1qr, or
1gry. The LQG regulator minimizes some quadratic cost function that trades
off regulation performance and control effort. This regulator is dynamic and
relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands
u = —KXx

where x is the Kalman state estimate. The regulator state-space equations are

x=[A-LC-(B-LD)K|x+Ly,

u = —KXx

where y,, is the vector of plant output measurements (see kalman for
background and notation). The diagram below shows this dynamic regulator in
relation to the plant.
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Process
- S
noise Plant >y
-
u u
Kalman < +
K -— 54 Measurement
X filter <& noise
Yy +

LQG regulator

In discrete time, you can form the LQG regulator using either the prediction
x[n In—1] of x[n] based on measurements upto y,[n—1], or the current state
estimate x[n|n] based on all available measurements including y, [n] . While
the regulator

u[n] = —Kx[n|n-1]

is always well-defined, the current regulator

u[n] = -KX[n|n]

is causal only when 1 —KMD is invertible (see kalman for the notation). In
addition, practical implementations of the current regulator should allow for
the processing time required to compute u[n] once the measurements y, [n]
become available (this amounts to a time delay in the feedback loop).

rlqg = lqgreg(kest,k) returnsthe LQG regulator rlqg (a state-space model)
given the Kalman estimator kest and the state-feedback gain matrix k. The
same function handles both continuous- and discrete-time cases. Use
consistent tools to design kest and k:

=« Continuous regulator for continuous plant: use 1qr or 1qry and kalman.
= Discrete regulator for discrete plant: use d1qr or 1gry and kalman.



lqgreg

= Discrete regulator for continuous plant: use 1qrd and kalmd.

In discrete time, 1qgreg produces the regulator
u[n] = —Kx[n|n-1]

by default (see “Description”). To form the “current” LQG regulator instead, use
u[n] = —-Kx[n|n]

the syntax
rlqg = lqgreg(kest,k, 'current')

This syntax is meaningful only for discrete-time problems.

rlqg = lqgreg(kest,k,controls) handles estimators that have access to
additional known plant inputs u. The index vector controls then specifies
which estimator inputs are the controls u, and the resulting LQG regulator
rlqg has uy andy,, as inputs (see figure below).

Note Always use positive feedback to connect the LQG regulator to the plant.

u
u Kalman
— P . L e K u
d estimator R >
Yo — 1% X

LQG regulator

Example See the example LQG Regulation.
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See Also

5-122

kalman
kalmd
1qgr, dlgr
1grd
1gry

reg

Kalman estimator design

Discrete Kalman estimator for continuous plant
State-feedback LQ regulator

Discrete LQ regulator for continuous plant

LQ regulator with output weighting

Form regulator given state-feedback and estimator
gains



Igr

Purpose

Syntax

Description

Limitations

See Also

Design linear-quadratic (LQ) state-feedback regulator for continuous plant

[K,S,e]
[K,S,e]

1gr(A,B,Q,R)
1gr(A,B,Q,R,N)

[K,S,e] = 1gr(A,B,Q,R,N) calculates the optimal gain matrix K such that the
state-feedback law u = —Kx

minimizes the quadratic cost function
J(u) = J’ (xTQx +Uu'RuU+ 2xTNu)dt
0

for the continuous-time state-space model X = Ax + Bu
The default value N=0 is assumed when N is omitted.

In addition to the state-feedback gain K, 1qr returns the solution S of the
associated Riccati equation

ATs+sA—(sB+N)R B Ts+NT)+Q = 0

and the closed-loop eigenvalues e = eig(A-B*K). Note that K is derived from
S by

K=RYB'S+N")

The problem data must satisfy:

= The pair (A, B) is stabilizable.
- R>0and Q—NRN">0.

- (Q- NRINT, A BR_lNT) has no unobservable mode on the imaginary
axis.

care Solve continuous Riccati equations

dlgr State-feedback LQ regulator for discrete plant

lqgreg Form LQG regulator

lqgrd Discrete LQ regulator for continuous plant

lgry State-feedback LQ regulator with output weighting

5-123



Igrd

Purpose

Syntax

Description

Algorithm

5-124

Design discrete LQ regulator for continuous plant

[Kd,S,e]
[Kd,S,e]

1gqrd(A,B,Q,R,Ts)
1gqrd(A,B,Q,R,N,Ts)

1qrd designs a discrete full-state-feedback regulator that has response
characteristics similar to a continuous state-feedback regulator designed using
1qgr. This command is useful to design a gain matrix for digital implementation
after a satisfactory continuous state-feedback gain has been designed.

[Kd,S,e] = 1lqrd(A,B,Q,R,Ts) calculates the discrete state-feedback law
uln] = -Kyx[n]

that minimizes a discrete cost function equivalent to the continuous cost

function

J = I (xTQx + uTRu)dt
0

The matrices A and B specify the continuous plant dynamics

X = AX+ Bu

and Ts specifies the sample time of the discrete regulator. Also returned are the
solution S of the discrete Riccati equation for the discretized problem and the
discrete closed-loop eigenvalues e = eig(Ad-Bd*Kd).

[Kd,S,e] = 1lgrd(A,B,Q,R,N,Ts) solves the more general problem with a
cross-coupling term in the cost function.

0

J :I (xTQx+uTRu+2xTNu)dt
0

The equivalent discrete gain matrix Kd is determined by discretizing the
continuous plant and weighting matrices using the sample time Ts and the
zero-order hold approximation.

With the notation



Igrd

Limitations

See Also

References

T

o(1) = e, Ay = O(T,)
T
rm = ¢""Ban, By =1(Ty)
0
the discretized plant has equations
X[n+1] = Agx[n] + Byu[n]
and the weighting matrices for the equivalent discrete cost function are
Qa Nal _ "lo"(r) 0 [Q N} {m(r) r(r)}dT
T T
Ng Rgf O [rT if(IN"RILO 1
The integrals are computed using matrix exponential formulas due to Van
Loan (see [2]). The plant is discretized using c2d and the gain matrix is

computed from the discretized data using d1qgr.

The discretized problem data should meet the requirements for d1qgr.

c2d Discretization of LTI model

dlgr State-feedback LQ regulator for discrete plant
kalmd Discrete Kalman estimator for continuous plant
1lqgr State-feedback LQ regulator for continuous plant

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic
Systems, Second Edition, Addison-Wesley, 1980, pp. 439-440

[2] Van Loan, C.F., “Computing Integrals Involving the Matrix Exponential,”
IEEE Trans. Automatic Control, AC-15, October 1970.
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Purpose

Syntax

Description

Example
Limitations

See Also
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Linear-quadratic (LQ) state-feedback regulator with output weighting

[K,S,e] = lgry(sys,Q,R)
[K,S,e] = lgry(sys,Q,R,N)

Given the plant

X =Ax+Bu
y=Cx+Du
or its discrete-time counterpart, 1qry designs a state-feedback control
= —Kx

that minimizes the quadratic cost function with output weighting
J(u) = J’ (yTQy +Uu'RU+ 2yTNu)dt
0

(or its discrete-time counterpart). The function 1qgry is equivalent to 1qr or
dlgr with weighting matrices:

Q N _|cTo QN{CD}
N'R| [pTiINTR/LO

[K,S,e] = 1gry(sys,Q,R,N) returns the optimal gain matrix K, the Riccati
solution S, and the closed-loop eigenvalues e = eig(A-B*K). The state-space
model sys specifies the continuous- or discrete-time plant data (A, B,C, D).
The default value N=0 is assumed when N is omitted.

See LQG Design for the x-Axis for an example.

The data A, B, Q, R, N must satisfy the requirements for 1qr or d1lqr.

lgr State-feedback LQ regulator for continuous plant
dlgr State-feedback LQ regulator for discrete plant
kalman Kalman estimator design

lqgreg Form LQG regulator
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Purpose

Syntax

Description

Simulate LTI model response to arbitrary inputs

1sim(sys,u,t)

1sim(sys,u,t,x0)

1sim(sys,u,t,x0,'zoh")

lsim(sys,u,t,x0, ' 'foh")
1sim(sys1,sys2,...,sysN,u,t)
1sim(sys1,sys2,...,sysN,u,t,x0)

1sim(sys1, 'PlotStylel',...,sysN, 'PlotStyleN',u,t)

[y,t,x] = lsim(sys,u,t,x0)

1sim simulates the (time) response of continuous or discrete linear systems to
arbitrary inputs. When invoked without left-hand arguments, 1sim plots the
response on the screen.

lsim(sys,u,t) produces aplot of the time response of the LTI model sys to the
input time history t,u. The vector t specifies the time samples for the
simulation and consists of regularly spaced time samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t)) and as
many columns as system inputs. Each row u(i, :) specifies the input value(s)
at the time sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In discrete
time, u must be sampled at the same rate as the system (t is then redundant
and can be omitted or set to the empty matrix). In continuous time, the time
sampling dt=t(2)-t(1) isused to discretize the continuous model. If dt is too
large (undersampling), 1sim issues a warning suggesting that you use a more
appropriate sample time, but will use the specified sample time. See Algorithm
on page 118 for a discussion of sample times.

lsim(sys,u,t,x0) further specifies an initial condition x0 for the system
states. This syntax applies only to state-space models.

lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0, 'foh') explicitly specifies how
the input values should be interpolated between samples (zero-order hold or
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linear interpolation). By default, 1sim selects the interpolation method
automatically based on the smoothness of the signal U.

Finally,
1sim(sys1,sys2,...,sysN,u,t)

simulates the responses of several LTI models to the same input history t,u and
plots these responses on a single figure. As with bode or plot, you can specify
a particular color, linestyle, and/or marker for each system, for example,

lsim(sys1,'y:',sys2,'g--"',u,t,x0)
The multisystem behavior is similar to that of bode or step.
When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. The matrix y has as many rows as time samples (length(t)) and as
many columns as system outputs. The same holds for x with “outputs” replaced
by states. Note that the output t may differ from the specified time vector when
the input data is undersampled (see “Algorithm”).

Simulate and plot the response of the system

252+53+1
H(s) = s?+2s+3

s—1

2
s +s+5

to a square wave with period of four seconds. First generate the square wave
with gensig. Sample every 0.1 second during 10 seconds:

[u,t] = gensig('square',4,10,0.1);

Then simulate with 1sim.
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Algorithm

H= [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)
<) Figure No. 1 e
File Edit ¥iew Insert Tools Window Help
Dsda/ "A A/ ®BpD0

Linear Simulation Results

Ta: %10

Amplitude:

To: Y2

06 I I I
1]

Time (zec)

Discrete-time systems are simulated with 1titr (state space) or filter
(transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the 'zoh' or
‘foh' method (' foh' is used for smooth input signals and 'zoh' for
discontinuous signals such as pulses or square waves). The sampling period is
set to the spacing dt between the user-supplied time samples t.

The choice of sampling period can drastically affect simulation results. To
illustrate why, consider the second-order model
w2
H(s) = 70— w = 62.83
S"+2s+w

To simulate its response to a square wave with period 1 second, you can proceed
as follows:
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w2 = 62.83"2

h = tf(w2,[1 2 w2])

t =0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values
Isim(h,u,t)

1sim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or
faster.

and produces this plot.

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Dsda/ "A A/ ®BpD0

Linear Simulation Results
o7 T T T T T T T T T

0E

0s

04

Amplitude:

0z

o1+

il I I I I I I I I
1] 0.5 1 1.5 2 25 S| 35 4 45 5]

Time (zec)

To improve on this response, discretize H(s) using the recommended sampling

period:
dt=0.016;
ts=0:dt:5;

us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
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1sim(hd,us,ts)

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Dsda/ "A A/ ®BpD0

Linear Simulation Results

Amplitude:

1
1] 0.5 1 1.5 2 25 S| 35 4 45 5]
Time (zec)

This response exhibits strong oscillatory behavior hidden from the
undersampled version.

See Also gensig Generate test input signals for 1sim
impulse Impulse response
initial Free response to initial condition
ltiview LTI system viewer
step Step response
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Purpose Help on LTI models
Syntax ltimodels
1timodels (modeltype)
Description 1ltimodels displays general information on the various types of LTI models

supported in the Control System Toolbox.

ltimodels(modeltype) gives additional details and examples for each type of
LTI model. The string modeltype selects the model type among the following:

= tf — Transfer functions (TF objects)

< zpk — Zero-pole-gain models (ZPK objects)

= ss — State-space models (SS objects)

= frd — Frequency response data models (FRD objects).
Note that you can type

ltimodels zpk

as a shorthand for

1timodels('zpk"')

See Also frd Create or convert to FRD models
ltiprops Help on LTI model properties
Ss Create or convert to a state-space model
tf Create or convert to a transfer function model
zpk Create or convert to a zero/pole/gain model
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Purpose

Syntax

Description

See also

Help on LTI model properties

1timodels
1timodels (modeltype)

ltiprops displays details on the generic properties of LTI models.

ltiprops(modeltype) gives details on the properties specific to the various
types of LTI models. The string modeltype selects the model type among the
following:

= tf' — transfer functions (TF objects)
= zpk — zero-pole-gain models (ZPK objects)
= 55 — state-space models (SS objects)
= frd — frequency response data (FRD objects).
Note that you can type
ltiprops tf
as a shorthand for

1tiprops('tf')

get Get the properties for an LTI model
ltimodels Help on LTI models
set Set or modify LTI model properties
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Purpose

Syntax

Description
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Initialize an LTI Viewer for LTI system response analysis

ltiview

ltiview(sys1,sys2,...,sysn)
ltiview(’plottype',sysl,sys2,...,sysn)
ltiview('plottype’,sys,extras)
ltiview('clear',viewers)
ltiview('current',sys1,sys2,...,sysn,viewers)

1ltiview when invoked without input arguments, initializes a new LTI Viewer
for LTI system response analysis.

ltiview(sys1,sys2,...,sysn) opens an LTI Viewer containing the step
response of the LTI models sys1,sys2,...,sysn. You can specify a distinctive
color, line style, and marker for each system, as in

sys1 = rss(3,2,2);
sys2 = rss(4,2,2);
ltiview(syst,'r-*',sys2,'m--");

ltiview('plottype’,sys) initializes an LTI Viewer containing the LTI
response type indicated by plottype for the LTI model sys. The string
plottype can be any one of the following:

‘step'’
"impulse’
"initial'’
‘1sim'
‘pzmap'’
"bode’
‘nyquist’
‘nichols’
‘sigma’

or,

plottype can be a cell vector containing up to six of these plot types. For
example,

ltiview({'step'; 'nyquist'},sys)

displays the plots of both of these response types for a given system sys.
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See Also

ltiview(plottype,sys,extras) allows the additional input arguments
supported by the various LTI model response functions to be passed to the
ltiview command.

extras is one or more input arguments as specified by the function named in
plottype. These arguments may be required or optional, depending on the type
of LTI response. For example, if plottype is 'step' then extras may be the
desired final time, Tfinal, as shown below.

ltiview('step',sys,Tfinal)

However, if pIlottype is 'initial', the extras arguments must contain the
initial conditions x0 and may contain other arguments, such as Tfinal.

ltiview('initial',sys,x0,Tfinal)

See the individual references pages of each possible plottype commands for a
list of appropriate arguments for extras.

ltiview('clear',viewers) clears the plots and data from the LTI Viewers
with handles viewers.

ltiview('current',sys1,sys2,...,sysn,viewers) adds the responses of the
systems sys1,sys2,...,sysn to the LTI Viewers with handles viewers. If
these new systems do not have the same I/O dimensions as those currently in
the LTI Viewer, the LTI Viewer is first cleared and only the new responses are
shown.

Finally,

ltiview(plottype,sysi,sys2,...sysN)
ltiview(plottype,sys1,PlotStylel,sys2,PlotStyle2,...)
ltiview(plottype,sysi,sys2,...sysN,extras)

initializes an LTI Viewer containing the responses of multiple LTI models,
using the plot styles in PlotStyle, when applicable. See the individual
reference pages of the LTI response functions for more information on
specifying plot styles.

bode Bode response

impulse Impulse response

initial Response to initial condition

lsim Simulate LTI model response to arbitrary inputs
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nichols
nyquist
pzmap
sigma
step

Nichols response
Nyquist response
Pole/zero map
Singular value response
Step response



lyap

Purpose

Syntax

Description

Algorithm

Limitations

See Also

Solve continuous-time Lyapunov equations

X
X

lyap(A,Q)
lyap(A,B,C)

lyap solves the special and general forms of the Lyapunov matrix equation.
Lyapunov equations arise in several areas of control, including stability theory
and the study of the RMS behavior of systems.

X = lyap(A,Q) solves the Lyapunov equation

AX+XAT+Q = 0

where A and Q are square matrices of identical sizes. The solution X is a
symmetric matrix if Q is.

X = lyap(A,B,C) solves the generalized Lyapunov equation (also called
Sylvester equation).

AX+XB+C =0

The matrices A, B, C must have compatible dimensions but need not be
square.

lyap transforms the A and B matrices to complex Schur form, computes the
solution of the resulting triangular system, and transforms this solution back

[1].

The continuous Lyapunov equation has a (unique) solution if the eigenvalues
ag, O,,...,a, of Aand B4, B,, ..., B, of Bsatisfy

a;+p;%0 for all pairs (i, j)

If this condition is violated, lyap produces the error message

Solution does not exist or is not unique.

covar Covariance of system response to white noise
dlyap Solve discrete Lyapunov equations
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References [1] Bartels, R.H. and G.W. Stewart, “Solution of the Matrix Equation AX + XB
= C,” Comm. of the ACM, Vol. 15, No. 9, 1972.

[2] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere
Publishing, 1975. pp. 328-338.
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Purpose

Syntax

Description

Compute gain and phase margins and associated crossover frequencies

[Gm,Pm,Wcg,Wcp]
[Gm,Pm,Wcg,Wcp]
margin(sys)

margin(sys)
margin(mag,phase,w)

margin calculates the minimum gain margin, phase margin, and associated
crossover frequencies of SISO open-loop models. The gain and phase margins
indicate the relative stability of the control system when the loop is closed.
When invoked without left-hand arguments, margin produces a Bode plot and
displays the margins on this plot.

The gain margin is the amount of gain increase required to make the loop gain
unity at the frequency where the phase angle is —180°. In other words, the gain
margin is 1/g if g is the gain at the —180° phase frequency. Similarly, the
phase margin is the difference between the phase of the response and —180°
when the loop gain is 1.0. The frequency at which the magnitude is 1.0 is called
the unity-gain frequency or crossover frequency. It is generally found that gain
margins of three or more combined with phase margins between 30 and 60
degrees result in reasonable trade-offs between bandwidth and stability.

[Gm,Pm,Wcg,Wcp] = margin(sys) computes the gain margin Gm, the phase
margin Pm, and the corresponding crossover frequencies Wcg and Wcp, given the
SISO open-loop model sys. This function handles both continuous- and
discrete-time cases. When faced with several crossover frequencies, margin
returns the smallest gain and phase margins.

[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) derives the gain and phase
margins from the Bode frequency response data (magnitude, phase, and
frequency vector). Interpolation is performed between the frequency points to
estimate the margin values. This approach is generally less accurate.

When invoked without left-hand argument,
margin(sys)

plots the open-loop Bode response with the gain and phase margins marked by
vertical lines.
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Example You can compute the gain and phase margins of the open-loop discrete-time
transfer function. Type

hd = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)
MATLAB responds with

Transfer function:
0.04798 z + 0.0464

z*"2 - 1.81 z + 0.9048

Sampling time: 0.1

Type

[Gm,Pm,Wcg,Wcp] = margin(hd);
[Gm,Pm,Wcg,Wcp]

and MATLAB returns

ans =
2.0517 13.5711 5.4374 4.3544

You can also display these margins graphically.
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Algorithm

See Also

margin(hd)
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The phase margin is computed using H_, theory, and the gain margin by
solving H(jw) = H(jw) for the frequency w.

bode Bode frequency response
ltiview LTI system viewer
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Purpose

Syntax

Description

Example
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Minimal realization or pole-zero cancellation

sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)

sysr = minreal(sys) eliminates uncontrollable or unobservable state in
state-space models, or cancels pole-zero pairs in transfer functions or
zero-pole-gain models. The output sysr has minimal order and the same
response characteristics as the original model sys.

sysr = minreal(sys,tol) specifies the tolerance used for state elimination or
pole-zero cancellation. The default value is tol = sqrt(eps) and increasing
this tolerance forces additional cancellations.

[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an
orthogonal matrix U such that (U*A*U',U*B,C*U') is a Kalman decomposition
of (A,B,C)

The commands

g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * ¢

produce the nonminimal zero-pole-gain model by typing cloop.

Zero/pole/gain:
s (s-1)

To cancel the pole-zero pairat s = 1, type
cloop = minreal(cloop)
and MATLAB returns

Zero/pole/gain:

(s”2 + s + 1)
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Algorithm Pole-zero cancellation is a straightforward search through the poles and zeros
looking for matches that are within tolerance. Transfer functions are first
converted to zero-pole-gain form.

See Also balreal Grammian-based input/output balancing
modred Model order reduction
sminreal Structured model reduction
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Purpose

Syntax

Description

Example
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Model order reduction

rsys = modred(sys,elim)
rsys = modred(sys,elim, 'mdc')
rsys = modred(sys,elim, 'del')

modred reduces the order of a continuous or discrete state-space model sys.
This function is usually used in conjunction with balreal. Two order reduction
techniques are available:

= rsys = modred(sys,elim) or rsys = modred(sys,elim, 'mdc') produces a
reduced-order model rsys with matching DC gain (or equivalently, matching
steady state in the step response). The index vector elim specifies the states
to be eliminated. The resulting model rsys has length(elim) fewer states.
This technique consists of setting the derivative of the eliminated states to
zero and solving for the remaining states.

= rsys = modred(sys,elim, 'del"')simply deletes the states specified by elim.
While this method does not guarantee matching DC gains, it tends to
produce better approximations in the frequency domain (see example below).

If the state-space model sys has been balanced with balreal and the
grammians have m small diagonal entries, you can reduce the model order by
eliminating the last m states with modred.

Consider the continuous fourth-order model

s3+ 1152+ 365 + 26
3
s*+14.65° +74.965> + 153.7s + 99.65

h(s) =

To reduce its order, first compute a balanced state-space realization with
balreal by typing

h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])
[hb,g] = balreal(h)

g |
MATLAB returns

ans =
1.3938e-01 9.5482e-03 6.2712e-04  7.3245e-06
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The last three diagonal entries of the balanced grammians are small, so
eliminate the last three states with modred using both matched DC gain and
direct deletion methods.

hmdc = modred(hb,2:4, 'mdc')
hdel = modred(hb,2:4,'del")

Both hmdc and hdel are first-order models. Compare their Bode responses
against that of the original model h(s).

bode(h,"'-"',hmdc, 'x',hdel,'*")
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The reduced-order model hdel is clearly a better frequency-domain
approximation of h(s). Now compare the step responses.
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step(h,'-"',hmdc,"'-."',hdel,"'--")

<) Figure No. 1 =] 3
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While hdel accurately reflects the transient behavior, only hmdc gives the true
steady-state response.

Algorithm The algorithm for the matched DC gain method is as follows. For
continuous-time models

AX + Bu
Cx+Du

the state vector is partitioned into x, , to be kept, and x, , to be eliminated.

X A, A X B
1| = |Au Argf|Xq| , By |
X5 Axr Al X |By

= [Cl Cz]x +Du

<
|
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Limitations

See Also

Next, the derivative of x, is set to zero and the resulting equation is solved for
X1 . The reduced-order model is given by

-1 -1
Xy = [Ap =AppApAxn X +[By —ApA,B,lu
-1 -1
Y = [C1=CrAnAs]x+[D-CyA%B,lu
The discrete-time case is treated similarly by setting

X,[n+1] = x,[n]

With the matched DC gain method, A,, must be invertible in continuous time,
and I -A,, must be invertible in discrete time.

balreal Input/output balancing of state-space models
minreal Minimal state-space realizations
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Purpose
Syntax

Description

Example

See Also
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Provide the number of the dimensions of an LTI model or LTI array

>
1}

ndims(sys)

n = ndims(sys) is the number of dimensions of an LTI model or an array of
LTI models sys. A single LTI model has two dimensions (one for outputs, and
one for inputs). An LTI array has 2+p dimensions, where p =2 is the number
of array dimensions. For example, a 2-by-3-by-4 array of models has 2+3=5
dimensions.

ndims(sys) = length(size(sys))

sys = rss(3,1,1,3);
ndims(sys)

ans =
4

ndims returns 4 for this 3-by-1 array of SISO models.

size Returns a vector containing the lengths of the
dimensions of an LTI array or model



ngrid

Purpose
Syntax

Description

Example

Superimpose a Nichols chart on a Nichols plot
ngrid

ngrid superimposes Nichols chart grid lines over the Nichols frequency
response of a SISO LTI system. The range of the Nichols grid lines is set to
encompass the entire Nichols frequency response.

The chart relates the complex number H/ (1 + H) to H, where H is any
complex number. For SISO systems, when H is a point on the open-loop
frequency response, then

H
1+H

is the corresponding value of the closed-loop frequency response assuming unit
negative feedback.

If the current axis is empty, ngrid generates a new Nichols chart grid in the
region —40 dB to 40 dB in magnitude and —360 degrees to 0 degrees in phase.
If the current axis does not contain a SISO Nichols frequency response, ngrid
returns a warning.

Plot the Nichols response with Nichols grid lines for the system.

—4s* + 48s° —18s? + 2505 + 600

4

H(s) = 3 >
s +30s” +282s" +525s5 +60

Type
H=tf([-4 48 -18 250 600],[1 30 282 525 60])
MATLAB returns

Transfer function:
- 4 s"4 + 48 s*"3 - 18 s"2 + 250 s + 600

s™4 + 30 s"3 + 282 s"2 + 525 s + 60

Type
nichols(H)
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See Also
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ngrid
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Purpose

Syntax

Description

Compute Nichols frequency response of LTI models

nichols(sys)
nichols(sys,w)

nichols(sys1,sys2,...,sysN)
nichols(sysi1,sys2,...,SysN,w)
nichols(sysi1, 'PlotStyletl’',...,sysN, 'PlotStyleN')

[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

nichols computes the frequency response of an LTI model and plots it in the
Nichols coordinates. Nichols plots are useful to analyze open- and closed-loop
properties of SISO systems, but offer little insight into MIMO control loops.
Use ngrid to superimpose a Nichols chart on an existing SISO Nichols plot.

nichols(sys) produces a Nichols plot of the LTI model sys. This model can be
continuous or discrete, SISO or MIMO. In the MIMO case, nichols produces
an array of Nichols plots, each plot showing the response of one particular 1/0
channel. The frequency range and gridding are determined automatically
based on the system poles and zeros.

nichols(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval [wmin,wmax],
setw = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in radians/sec.

nichols(sysi1,sys2,...,sysN) or nichols(sys1,sys2,...,SysN,w)
superimposes the Nichols plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nichols(sysi1, 'PlotStylel',...,sysN, 'PlotStyleN')
See bode for an example.

When invoked with left-hand arguments,
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Example
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[mag,phase,w] = nichols(sys)
[mag,phase] = nichols(sys,w)

return the magnitude and phase (in degrees) of the frequency response at the
frequencies w (in rad/sec). The outputs mag and phase are 3-D arrays similar to
those produced by bode (see the bode reference page). They have dimensions

(number of outputs) x (number of inputs) x (length of w)
Plot the Nichols response of the system

—4s* + 48s° —18s° + 2505 + 600

s* +30s% + 28252 +5255 +60

H(s) =

num = [-4 48 -18 250 600];
den = [1 30 282 525 60];
H = tf(num,den)

nichols(H); ngrid
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<) Figure No. 1 =] 3
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The right-click menu for Nichols plots includes the Tight option under Zoom.
You can use this to clip unbounded branches of the Nichols plot.

Algorithm See bode.

See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
ngrid Grid on Nichols plot
nyquist Nyquist plot
sigma Singular value plot
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Purpose Compute LTI model norms

Syntax norm(sys)
norm(sys,?2)

norm(sys,inf)
norm(sys,inf,tol)
[ninf,fpeak] = norm(sys)

Description norm computes the H, or L norm of a continuous- or discrete-time LTI model.

H, Norm

The H, norm of a stable continuous system with transfer function H(s), is the
root-mean-square of its impulse response, or equivalently

IHI, = ,\/ZLTJOO Trace(H(jw)HH(jw)) dw

This norm measures the steady-state covariance (or power) of the output
response y = Hw to unit white noise inputs w.

IHIZ = lim Ey®) 'y} . EwOw(®) = 3(t-1)!

Infinity Norm
The infinity norm is the peak gain of the frequency response, that is,

IH(s)ll,, = max [H(jw)l (SISO case)
o
H(S),, = max Omax(H(w)) (MIMO case)
where o, (.) denotes the largest singular value of a matrix.

The discrete-time counterpart is
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Usage

Example

IH@)l, =  max (HE'®)

8010, 1]

Omax

norm(sys) or norm(sys,2) both return the H, norm of the TF, SS, or ZPK
model sys. This norm is infinite in the following cases:

= sys is unstable.

=« sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the
frequency w = ).

Note that norm(sys) produces the same result as
sqrt(trace(covar(sys,1)))

norm(sys,inf) computes the infinity norm of any type of LTI model sys. This
norm is infinite if sys has poles on the imaginary axis in continuous time, or on
the unit circle in discrete time.

norm(sys,inf,tol) sets the desired relative accuracy on the computed
infinity norm (the default value is tol=1e-2).

[ninf,fpeak] = norm(sys,inf) also returns the frequency fpeak where the
gain achieves its peak value.

Consider the discrete-time transfer function

7°_2.8417%+2.87527-1.004

73 _-2.4177% + 2.0032 - 0.5488

H(z) =

with sample time 0.1 second. Compute its H, norm by typing

H=tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)

ans =
1.2438

Compute its infinity norm by typing

[ninf,fpeak] = norm(H,inf)
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ninf =
2.5488

fpeak =
3.0844

These values are confirmed by the Bode plot of H(z).

bode (H)

Bode Diagrams
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The gain indeed peaks at approximately 3 rad/sec and its peak value in dB is
found by typing

20*1og10(ninf)
MATLAB returns

ans =
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Algorithm

See Also

References

8.1268

norm uses the same algorithm as covar for the H, norm, and the algorithm of
[1] for the infinity norm. sys is first converted to state space.

bode Bode plot
freqresp Frequency response computation
sigma Singular value plot

[1] Bruisma, N.A. and M. Steinbuch, “A Fast Algorithm to Compute the
H,, -Norm of a Transfer Function Matrix,” System Control Letters, 14 (1990),
pp. 287—-293.
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Purpose

Syntax

Description
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Compute Nyquist frequency response of LTI models

nyquist(sys)
nyquist(sys,w)

nyquist(sysi,sys2,...,sysN)
nyquist(sysi,sys2,...,sSysN,w)
nyquist(sysi, 'PlotStylel1',...,sysN, 'PlotStyleN')

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

nyquist calculates the Nyquist frequency response of LTI models. When
invoked without left-hand arguments, nyquist produces a Nyquist plot on the
screen. Nyquist plots are used to analyze system properties including gain
margin, phase margin, and stability.

nyquist(sys) plots the Nyquist response of an arbitrary LTI model sys. This
model can be continuous or discrete, and SISO or MIMO. In the MIMO case,
nyquist produces an array of Nyquist plots, each plot showing the response of
one particular 1/0 channel. The frequency points are chosen automatically
based on the system poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency points to
be used for the plot. To focus on a particular frequency interval, set

w = {wmin,wmax}. To use particular frequency points, set w to the vector of
desired frequencies. Use logspace to generate logarithmically spaced
frequency vectors. Frequencies should be specified in rad/sec.

nyquist(sysi,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w)
superimposes the Nyquist plots of several LTI models on a single figure. All
systems must have the same number of inputs and outputs, but may otherwise
be a mix of continuous- and discrete-time systems. You can also specify a
distinctive color, linestyle, and/or marker for each system plot with the syntax

nyquist(sysi, 'PlotStylel',...,sysN, 'PlotStyleN')
See bode for an example.

When invoked with left-hand arguments
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[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at the
frequencies w (in rad/sec). re and im are 3-D arrays (see “Arguments” below for
details).

Arguments The output arguments re and im are 3-D arrays with dimensions

(number of outputs) x (number of inputs) x (length of w)

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real and
imaginary parts of the response at the frequency w, = w(k).

re(1,1,k) = Re(h(jw,))
im(1,1,k) = Im(h(jw,))
For MIMO systems with transfer function H(s), re(:,:,k) and im(:,:,k)

give the real and imaginary parts of H(jw,) (both arrays with as many rows
as outputs and as many columns as inputs). Thus,

re(i,j,k) = Re(h;;(jwy))
im(i,j,k) = Im(h;; (Joy))

where hij is the transfer function from input j to output i.

Example Plot the Nyquist response of the system
2s°+5s+1
H(s) = -
S +2s+3

H=tf([2 5 1],[1 2 3])
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nyquist (H)

<) Figure No. 1 =] 3
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The nyquist function has support for M-circles, which are the contours of the
constant closed-loop magnitude. M-circles are defined as the locus of complex
numbers where

T - [

is a constant value. In this equation, w is the frequency in radians/second, and
G is the collection of complex numbers that satisfy the constant magnitude
requirement.

To activate the grid, select Grid from the right-click menu or type

grid
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at the MATLAB prompt. This figure shows the M circles for transfer function
H.
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You have two zoom options available from the right-click menu that apply
specifically to Nyquist plots:

= Tight —Clips unbounded branches of the Nyquist plot, but still includes the
critical point (-1, 0)
< On (-1,0) — Zooms around the critical point (-1,0)
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Also, click anywhere on the curve to activate data markers that display the real
and imaginary values at a given frequency. This figure shows the nyquist plot
with a data marker.
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See Also bode Bode plot
evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer
nichols Nichols plot
sigma Singular value plot
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Purpose Form the observability matrix
Syntax Ob = obsv(A,B)
Ob = obsv(sys)
Description obsv computes the observability matrix for state-space systems. For an n-by-n

matrix A and a p-by-n matrix C, obsv(A,C) returns the observability matrix

C
CA

Ob = CAZ

with n columns and np rows.

Ob = obsv(sys) calculates the observability matrix of the state-space model
sys. This syntax is equivalent to executing

Ob = obsv(sys.A,sys.C)

The model is observable if Ob has full rank n.

Example Determine if the pair
A =
1 1
4 -2
C =
1 0
0 1

is observable. Type

Ob = obsv(A,C);

% Number of unobservable states
unob = length(A)-rank(0b)
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MATLAB responds with

unob =
0

See Also obsvf Compute the observability staircase form
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Purpose

Syntax

Description

Example

Compute the observability staircase form

[Abar,Bbar,Cbar,T,k]
[Abar,Bbar,Cbar,T,k]

obsvf (A,B,C)
obsvf(A,B,C,tol)

If the observability matrix of (A,C) has rank r < n, where n is the size of A, then
there exists a similarity transformation such that

A=TAT', B=TB, C=cCT'
where T is unitary and the transformed system has a staircase form with the

unobservable modes, if any, in the upper left corner.

_ A A _ B _
A = no 12 , B = no C = 0cC
0 A, B [ 0]

where (C, A;) is observable, and the eigenvalues of A, ; are the unobservable
modes.

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) decomposes the state-space system
with matrices A, B, and C into the observability staircase form Abar, Bbar, and
Cbar, as described above. T is the similarity transformation matrix and k is a
vector of length n, where n is the number of states in A. Each entry of k
represents the number of observable states factored out during each step of the
transformation matrix calculation [1]. The number of nonzero elements in k
indicates how many iterations were necessary to calculate T, and sum (k) is the
number of states in A, the observable portion of Abar.

obsvf (A,B,C,tol) uses the tolerance tol when calculating the observable/
unobservable subspaces. When the tolerance is not specified, it defaults to
10*n*norm(a, 1) *eps.

Form the observability staircase form of

A =
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Algorithm

See Also

References
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C =

1 0

0 1

by typing

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
Abar =

1 1

4 -2
Bbar =

1 1

1 -1
Cbar =

1 0

0 1
T =

1 0

0 1
k =

2 0

obsvf is an M-file that implements the Staircase Algorithm of [1] by calling
ctrbf and using duality.

ctrbf Compute the controllability staircase form
obsv Calculate the observability matrix

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley,
1970.



ord2

Purpose

Syntax

Description

Example

See Also

Generate continuous second-order systems

[A,B,C,D]
[num,den]

ord2(wn,z)
ord2(wn,z)

[A,B,C,D] = ord2(wn,z) generates the state-space description (A,B,C,D) of
the second-order system

1

2 2
" +2(w,s+ W,

h(s) =

given the natural frequency wn (w,, ) and damping factor z (). Use ss to turn
this description into a state-space object.

[num,den] = ord2(wn,z) returns the numerator and denominator of the
second-order transfer function. Use tf to form the corresponding transfer
function object.

To generate an LTI model of the second-order transfer function with damping
factor ¢ = 0.4 and natural frequency w, = 2.4 rad/sec. , type

[num,den] = ord2(2.4,0.4)

num =
1
den =
1.0000 1.9200 5.7600
sys = tf(num,den)

Transfer function:

s”2 + 1.92 s + 5.76

rss Generate random stable continuous models
Ss Create a state-space LTI model
tf Create a transfer function LTI model
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Purpose

Syntax

Description

5-168

Compute the Padé approximation of models with time delays

[num,den] = pade(T,N)
pade(T,N)

SYSX pade(sys,N)
sysx = pade(sys,NI,NO,Nio)

pade approximates time delays by rational LTI models. Such approximations
are useful to model time delay effects such as transport and computation
delays within the context of continuous-time systems. The Laplace transform
of an time delay of T seconds is exp(—sT). This exponential transfer function
is approximated by a rational transfer function using the Padé approximation
formulas [1].

[num,den] = pade(T,N) returns the Nth-order (diagonal) Padé approximation
of the continuous-time 1/0O delay exp(—sT) in transfer function form. The row
vectors num and den contain the numerator and denominator coefficients in
descending powers of s. Both are Nth-order polynomials.

When invoked without output arguments,
pade(T,N)

plots the step and phase responses of the Nth-order Padé approximation and
compares them with the exact responses of the model with 1/O delay T. Note
that the Padé approximation has unit gain at all frequencies.

sysx = pade(sys,N) produces a delay-free approximation sysx of the
continuous delay system sys. All delays are replaced by their Nth-order Padé
approximation. See Time Delays for details on LTI models with delays.

sysx = pade(sys,NI,NO,Nio) specifies independent approximation orders for
each input, output, and 1/O delay. These approximation orders are given by the
arrays of integers NI, NO, and Nio, such that:

= NI(j) is the approximation order for the j-th input channel.

= NO (1) is the approximation order for the i-th output channel.

= Nio(i,]j) isthe approximation order for the 1/O delay from input j to output
i



pade

Example

Limitations

See Also

You can use scalar values to specify uniform approximation orders, and [] if
there are no input, output, or I/O delays.

Compute a third-order Padé approximation of a 0.1 second 1/O delay and
compare the time and frequency responses of the true delay and its
approximation. To do this, type

pade(0.1,3)
Step response of 3rd—order Pade approximation
1.5 T T T T T T T T T
l P ———
|
€ o5 ! :
2 [
g |
g o/~~~ ----~ B
-0.5 *
-1 1 1 1 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time (secs)

Phase response
0 T T T — T

-200

-400

-600

Phase (deg.)

—-800

T

-1000 . . . . L N . . . T
10" 107 10
Frequency (rad/s)

High-order Padé approximations produce transfer functions with clustered
poles. Because such pole configurations tend to be very sensitive to
perturbations, Padé approximations with order N>10 should be avoided.

c2d Discretization of continuous system
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delay2z Changes transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1989, pp. 557-558.
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Purpose Parallel connection of two LTI models
Syntax sys = parallel(sysi,sys2)
sys = parallel(sysi,sys2,inpi,inp2,outi,out2)
Description parallel connects two LTI models in parallel. This function accepts any type

of LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as
regular matrices.

sys = parallel(sysi,sys2) forms the basic parallel connection shown below.

sys
sysT
+
u — — > Y
=+
sys2

This command is equivalent to the direct addition
Ssys = sys1 + sys2

(See Addition and Subtraction for details on LTI system addition.)
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sys = parallel(sysi,sys2,inp1,inp2,out1,out2) forms the more general
parallel connection.

Sys
V]_ » > Zl
sys
y
u, 1
u > y
u
2
Yo
sys2
Vo - > 7

The index vectors inp1 and inp2 specify which inputs u; of sys1 and which
inputs u, of sys2 are connected. Similarly, the index vectors out1 and out2
specify which outputs y; of sys1 and which outputs y, of sys2 are summed.
The resulting model sys has [v, ; u ; v,] asinputsand [z, ;Y ; Z,] as

outputs.

Example See Kalman Filtering for an example.

See Also append Append LTI systems
feedback Feedback connection
series Series connection
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Purpose

Syntax

Description

Example

Pole placement design

K = place(A,B,p)
[K,prec,message] = place(A,B,p)

Given the single- or multi-input system

X = AX+Bu

and a vector p of desired self-conjugate closed-loop pole locations, place
computes a gain matrix K such that the state feedback u = —Kx places the
closed-loop poles at the locations p. In other words, the eigenvalues of A-BK
match the entries of p (up to the ordering).

K = place(A,B,p) computes a feedback gain matrix K that achieves the
desired closed-loop pole locations p, assuming all the inputs of the plant are
control inputs. The length of p must match the row size of A. place works for
multi-input systems and is based on the algorithm from [1]. This algorithm
uses the extra degrees of freedom to find a solution that minimizes the
sensitivity of the closed-loop poles to perturbationsin A or B.

[K,prec,message] = place(A,B,p) also returns prec, an estimate of how
closely the eigenvalues of A—BK match the specified locations p (prec
measures the number of accurate decimal digits in the actual closed-loop
poles). If some nonzero closed-loop pole is more than 10% off from the desired
location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix
and substituting C' for B.

1 = place(A',C',p)."
Consider a state-space system (a,b,c,d) with two inputs, three outputs, and

three states. You can compute the feedback gain matrix needed to place the
closed-loop polesatp = [1.1 23 5.0] by

p=1[11.283 5.0];
K = place(a,b,p)
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Algorithm

See Also

References
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place uses the algorithm of [1] which, for multi-input systems, optimizes the
choice of eigenvectors for a robust solution. We recommend place rather than
acker even for single-input systems.

In high-order problems, some choices of pole locations result in very large
gains. The sensitivity problems attached with large gains suggest caution in
the use of pole placement techniques. See [2] for results from numerical testing.

acker Pole placement using Ackermann’s formula
lgr State-feedback LQ regulator design
rlocus Root locus design

[1] Kautsky, J. and N.K. Nichols, “Robust Pole Assignment in Linear State
Feedback,” Int. J. Control, 41 (1985), pp. 1129-1155.

[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and
Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA,
Sept. 1984.
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Purpose
Syntax
Description

Algorithm

Limitations

See Also

Compute the poles of an LTI system

p = pole(sys)

pole computes the poles p of the SISO or MIMO LTI model sys.

For state-space models, the poles are the eigenvalues of the A matrix, or the

generalized eigenvalues of A—AE in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are simply the
denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are
computed as the union of the poles for each SISO entry. If some columns or
rows have a common denominator, the roots of this denominator are counted
only once.

Multiple poles are numerically sensitive and cannot be computed to high
accuracy. A pole A with multiplicity m typically gives rise to a cluster of
computed poles distributed on a circle with center A and radius of order

1/m
p=¢

where ¢ is the relative machine precision (eps).

damp Damping and natural frequency of system poles
esort, dsort Sort system poles

pzmap Pole-zero map

zero Compute (transmission) zeros
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Purpose

Syntax

Description

Example
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Compute the pole-zero map of an LTI model

pzmap (sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

pzmap (sys) plots the pole-zero map of the continuous- or discrete-time LTI
model sys. For SISO systems, pzmap plots the transfer function poles and zeros.
For MIMO systems, it plots the system poles and transmission zeros. The poles
are plotted as x’s and the zeros are plotted as o's.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map of several LTI models on
a single figure. The LTI models can have different numbers of inputs and
outputs and can be a mix of continuous and discrete systems.

When invoked without left-hand arguments,
[p,z] = pzmap(sys)

returns the system poles and (transmission) zeros in the column vectors p and
z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant damping ratio
and natural frequency in the s- or z-plane.

Plot the poles and zeros of the continuous-time system.

sz+25+3

H=1tf([2 51],[1 2 3]); sgrid
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Algorithm

See Also

pzmap (H)

<) Figure No. 1 =] 3
File Edit ¥iew Insert Tools Window Help

Deda "A A/ | @20

Pole-Zero Map

DB 07z 08X 044_.--0F 044

Imag Axis

Real Axis

pzmap uses a combination of pole and zero.

damp Damping and natural frequency of system poles
esort, dsort Sort system poles

pole Compute system poles

rlocus Root locus

sgrid, zgrid Plot lines of constant damping and natural frequency
zero Compute system (transmission) zeros
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Purpose Form regulator given state-feedback and estimator gains
Syntax rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)
Description rsys = reg(sys,K,L) forms adynamic regulator or compensator rsys given a

state-space model sys of the plant, a state-feedback gain matrix K, and an
estimator gain matrix L. The gains K and L are typically designed using pole
placement or LQG techniques. The function reg handles both continuous- and
discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are
measured. The regulator rsys is obtained by connecting the state-feedback law
u = —Kx and the state estimator with gain matrix L (see estim). For a plant
with equations

X = Ax+Bu
y = Cx+Du

this yields the regulator

%=|[A-LC-(B-LD)K|%+Ly

u =-KX
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This regulator should be connected to the plant using positive feedback.

p Plant >y
u u
K State <J
- < Estimator

Regulator

rsys = reg(sys,K,L,sensors,known,controls) handles more general
regulation problems where:

= The plant inputs consist of controls u, known inputs u, and stochastic
inputs w.
= Only a subset y of the plant outputs is measured.

The index vectors sensors, known, and controls specify y, uy, and u as
subsets of the outputs and inputs of sys. The resulting regulator uses [u ; Y]
as inputs to generate the commands u (see figure below).

u
Estimator
y (sensors) L (gain L) R

Regulator rsys
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Example

See Also

Given a continuous-time state-space model
sys = ss(A,B,C,D)
with seven outputs and four inputs, suppose you have designed:

= A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as
control inputs

= A state estimator with gain L using outputs 4, 7, and 1 of the plant as
sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete
regulation system by

controls = [1,2,4];

sensors = [4,7,1];

known = [3];

regulator = reg(sys,K,L,sensors,known,controls)

estim Form state estimator given estimator gain
kalman Kalman estimator design

lqggreg Form LQG regulator

1lqr, dlgr State-feedback LQ regulator

place Pole placement
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Purpose

Syntax

Description

Example

See Also
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Change the shape of an LTI array

sys = reshape(sys,s1,s2,...,sKk)

sys = reshape(sys,[s1 s2 ... sk])

sys = reshape(sys,s1,s2,...,sk) (or,equivalently, sys = reshape(sys,[s1
s2 ... sk]))reshapesthe LTI array sys into an s1-by-s2-by...-sk array of LTI
models. Equivalently, sys = reshape(sys,[s1 s2 ... sk]) reshapesthe LTI

array sys into an s1-by-s2-by...-sk array of LTI models. With either syntax,
there must be s1*s2*...*sk models in sys to begin with.

Ssys = rss(4,1,1,2,3);
size(sys)

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

sys1 = reshape(sys,6);
size(sys1)

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

ndims Provide the number of dimensions of an LTI array
size Provide the lengths of each dimension of an LTI array
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Purpose

Syntax

Description

Evans root locus

rlocus(sys)
rlocus(sys,k)
rlocus(sysi,sys2,...)

[r,k] = rlocus(sys)
r = rlocus(sys,k)

rlocus computes the Evans root locus of a SISO open-loop model. The root
locus gives the closed-loop pole trajectories as a function of the feedback gain
k (assuming negative feedback). Root loci are used to study the effects of
varying feedback gains on closed-loop pole locations. In turn, these locations
provide indirect information on the time and frequency responses.

rlocus(sys) calculates and plots the root locus of the open-loop SISO model
sys. This function can be applied to any of the following negative feedback loops
by setting sys appropriately.

+ +
— G — G
k f— k [ F
sys = G sys = F * G
+
—»(O» C B G -
Lk<—
sys =G * C

If sys has transfer function

5-183



rlocus

Example
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h(s) = %

the closed-loop poles are the roots of
d(s)+kn(s) =0

rlocus adaptively selects a set of positive gains k to produce a smooth plot.
Alternatively,

rlocus(sys,k)
uses the user-specified vector k of gains to plot the root locus.

rlocus(sys1,sys2,...) draws the root loci of multiple LTI models sys1,
sys2, ... on asingle plot. You can specify a color, line style, and marker for
each model, as in

rlocus(syst, 'r',sys2,'y:"',sys3, 'gx').
When invoked with output arguments,

[r,k] = rlocus(sys)
r = rlocus(sys,Kk)

return the vector k of selected gains and the complex root locations r for these
gains. The matrix r has length (k) columns and its jth column lists the
closed-loop roots for the gain k(j).

Find and plot the root-locus of the following system.

252 +5s+1

sz+25+3

h(s) =

h =1tf([2 5 1],[1 2 3]);
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rlocus(h)

<) Figure No. 1 =] 3
File Edit “iew |nset Tools MWindow Help
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You can use the right-click menu for rlocus to add grid lines, zoom in or out,
and invoke the Property Editor to customize the plot. Also, click anywhere on
the curve to activate a data marker that displays the gain value, pole, damping,
overshoot, and frequency at the selected point.

See Also pole System poles
pzmap Pole-zero map
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Purpose

Syntax

Description

Example
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Generate stable random continuous test models

Sys = rss(n)

Sys = rss(n,p)

sys = rss(n,p,m)

sys = rss(n,p,m,st, ,SN)

rss(n) produces a stable random n-th order model with one input and one
output and returns the model in the state-space object sys.

rss(n,p) produces a random nth order stable model with one input and p
outputs, and rss(n,m,p) produces a random n-th order stable model with m
inputs and p outputs. The output sys is always a state-space model.

rss(n,p,m,s1,...,sn)produces an s1-by-. . .-by-sn array of random n-th
order stable state-space models with m inputs and p outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function,
frequency response, or zero-pole-gain form.
Obtain a stable random continuous LTI model with three states, two inputs,
and two outputs by typing

sys = rss(3,2,2)

a:
X1 X2 x3
X1 -0.54175 0.09729 0.08304
X2 0.09729 -0.89491 0.58707
x3 0.08304 0.58707 -1.95271
b =
ui u2
X1 -0.88844 -2.41459
X2 0 -0.69435
x3 -0.07162 -1.39139
C:
X1 X2 x3
y1 0.32965 0.14718 0
y2 0.59854 -0.10144 0.02805



I'SS

d =
ui u2
y1 -0.87631 -0.32758
y2 0 0
Continuous-time system.

See Also drss Generate stable random discrete test models
frd Convert LTI systems to frequency response form
tf Convert LTI systems to transfer function form
zpk Convert LTI systems to zero-pole-gain form
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Purpose

Syntax

Description
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Series connection of two LTI models

sys
sys

series(sys1,sys2)
series(sysi1,sys2,outputsi,inputs2)

series connects two LTI models in series. This function accepts any type of
LTI model. The two systems must be either both continuous or both discrete
with identical sample time. Static gains are neutral and can be specified as

regular matrices.

sys = series(sys1,sys2) forms the basic series connection shown below.

sys

u p sysl | —® sys2 >y

This command is equivalent to the direct multiplication
Sys = sys2 * sysi

See Multiplication for details on multiplication of LTI models.

sys = series(sysi,sys2,outputsi,inputs2) forms the more general series
connection.

sys

sys2 -y

|  sysf Y1 u;




series

Example

See Also

The index vectors outputs1and inputs2 indicate which outputs y,; of sys1and
which inputs u, of sys2 should be connected. The resulting model sys has u
as input and y as output.

Consider a state-space system sys1 with five inputs and four outputs and
another system sys2 with two inputs and three outputs. Connect the two
systems in series by connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of
sys2.

outputst = [2 4];
inputs2 = [1 2];
sys = series(sysi,sys2,outputsi,inputs2)

append Append LTI systems
feedback Feedback connection
parallel Parallel connection
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Purpose

Syntax

Description

Example
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Set or modify LTI model properties

set(sys, 'Property',Value)
set(sys, 'Propertyi1',Valuel, 'Property2',Value2,...)

set(sys, 'Property')
set(sys)

set is used to set or modify the properties of an LTI model (see LTI Properties
for background on LTI properties). Like its Handle Graphics counterpart, set
uses property name/property value pairs to update property values.

set(sys, 'Property',Value) assigns the value Value to the property of the
LTI model sys specified by the string 'Property'. This string can be the full
property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user'). The specified property must be compatible
with the model type. For example, if sys is a transfer function, Variable is a
valid property but StateName is not (see Model-Specific Properties for details).

set(sys, 'Property1',Valuel, 'Property2',Value2,...) sets multiple
property values with a single statement. Each property name/property value
pair updates one particular property.

set(sys, 'Property') displays admissible values for the property specified by
'"Property'. See “Property Values” below for an overview of legitimate LTI
property values.

set(sys) displays all assignable properties of sys and their admissible values.

Consider the SISO state-space model created by
sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque, reset the
D matrix to zero, and store its DC gain in the 'Userdata’ property by

set(sys, 'inputd',0.1, "inputn', ‘torque', 'd',0, 'user',dcgain(sys))

Note that set does not require any output argument. Check the result with get
by typing



set

get(sys)

a =1

© Qo O T
1}
— O WN

]
Nx = 1
StateName = {''}
Ts =0
InputDelay = 0.1
OutputDelay = 0

ioDelay = 0
InputName = {'torque'}
OutputName = {''}

InputGroup = {0x2 cell}
OutputGroup = {0x2 cell}
Notes = {}

UserData = -6

Property The following table lists the admissible values for each LTI property. N, and

Values N, denotes the number of inputs and outputs of the underlying LTI model. For
K-dimensional LTI arrays, let S, S, ..., S, denote the array dimensions.
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Table 5-2: LTI Properties

Property Name

Admissible Property Values

Ts

ioDelay

InputDelay

= 0 (zero) for continuous-time systems
< Sample time in seconds for discrete-time systems
= -1 or [] for discrete systems with unspecified sample time

Note: Resetting the sample time property does not alter the model data. Use
c2d, d2c, or d2d for discrete/continuous and discrete/discrete conversions.

Input/Output delays specified with

= Nonnegative real numbers for continuous-time models (seconds)

= Integers for discrete-time models (number of sample periods)

= Scalar when all 1/0 pairs have the same delay

- Ny -by-N,, matrix to specify independent delay times for each 1/O pair

= Array of size Ny -by- N, -by- S, -by-.. .-by-S,, to specify different 1/0 delays
for each model in an LTI array.

Input delays specified with

= Nonnegative real numbers for continuous-time models (seconds)

= Integers for discrete-time models (number of sample periods)

= Scalar when N, = 1 or system has uniform input delay

= Vector of length N, to specify independent delay times for each input
channel

= Array of size Ny-by- N, -by- S, -by-.. .-by-S, to specify different input
delays for each model in an LTI array.
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Table 5-2: LTI Properties (Continued)

Property Name

Admissible Property Values

OutputDelay

Notes
UserData

InputName

OutputName
InputGroup

OutputGroup

Output delays specified with

= Nonnegative real numbers for continuous-time models (seconds)
= Integers for discrete-time models (number of sample periods)
= Scalar when Ny = 1 or system has uniform output delay

= Vector of length Ny to specify independent delay times for each output
channel

= Array of size Ny -by- N, -by- S; -by-. . .-by-S,, to specify different output
delays for each model in an LTI array.

String, array of strings, or cell array of strings
Arbitrary MATLAB variable

= String for single-input systems, for example, 'thrust'

= Cell vector of strings for multi-input systems (with as many cells as inputs),
for example, {'u'; 'w'} for a two-input system

= Padded array of strings with as many rows as inputs, for example,
['rudder ' ; 'aileron']

Same as InputName (with “input” replaced by “output”)
Cell array. See Input Groups and Output Groups.

Same as InputGroup

Table 5-3: State-Space Model Properties

Property Name

Admissible Property Values

StateName

Same as InputName (with Input replaced by State)
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Table 5-3: State-Space Model Properties (Continued)

Property Name Admissible Property Values

a,b,c,d, e Real- or complex-valued state-space matrices (multidimensional arrays, in
the case of LTI arrays) with compatible dimensions for the number of
states, inputs, and outputs. See The Size of LTI Array Data for SS Models.

NXx =« Scalar integer representing the number of states for single LTI models or
LTI arrays with the same number of states in each model

= S,-by-..-by-S, -dimensional array of integers when all of the models of
an LTI array do not have the same number of states

Table 5-4: TF Model Properties

Property Name Admissible Property Values

num, den = Real- or complex-valued row vectors for the coefficients of the numerator or
denominator polynomials in the SISO case. List the coefficients in
descending powers of the variable s or z by default, and in ascending
] : .
powers of g = z © when the Variable property issetto 'q' or 'z~-1"' (see
note below).

- Ny—by-Nu cell arrays of real- or complex-valued row vectors in the MIMO
case, for example,
{[1 2];[1 0 3]} for a two-output/one-input transfer function

- Ny-by-Nu -by-S;-by-...-by-S, -dimensional real- or complex-valued cell
arrays for MIMO LTI arrays
Variable = String 's' (default) or 'p' for continuous-time systems
= String 'z' (default), 'q', or 'z~-1" for discrete-time systems
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Table 5-5: ZPK Model Properties

Property Name Admissible Property Values

= Vectors of zeros and poles (either real- or complex-valued) in SISO case

Z! p
- Ny-by-Nu cell arrays of vectors (entries are real- or complex valued) in
MIMO case, for example, z = {[],[-1 0]} for a model with two inputs and
one output
- Ny-by-Nu -by-S,-by-...-by-S, -dimensional cell arrays for MIMO LTI
arrays
Variable = String 's' (default) or 'p' for continuous-time systems

< String 'z' (default), 'q', or 'z~-1"' for discrete-time systems

Table 5-6: FRD Model Properties

Property Name Admissible Property Values
Frequency Real-valued vector of length N; -by-1, where N is the number of
frequencies
Response =N, -by-N, -by- N; -dimensional array of complex data for single LTI models
- Ny -by-N, -by- N¢ -by-S, -by-...-by-S -dimensional array for LTI arrays
Units String 'rad/s' (default), or 'Hz'
Remark For discrete-time transfer functions, the convention used to represent the

numerator and denominator depends on the choice of variable (see the tf entry
for details). Like tf, the syntax for set changes to remain consistent with the
choice of variable. For example, if the Variable property is setto 'z' (the
default),

set(h, 'num',[1 2],'den',[1 3 4])

produces the transfer function
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Z+2
z2+3z+4

h(z) =
However, if you change the Variable to 'z*-1"' (or 'q') by

set(h, 'variable','z*-1"),
the same command

set(h, 'num',[1 2],'den',[1 3 4])
now interpr{ats thezrow vectors [1 2] and [1 3 4] as the polynomials 1 + 22_1
and 1+3z ~+4z ° and produces:
_oa . 1+277

h(z ") = - — = zh(z)
1+3z " +4z

Note Because the resulting transfer functions are different, make sure to use
the convention consistent with your choice of variable.

See Also get Access/query LTI model properties
frd Specify a frequency response data model
SS Specify a state-space model
tf Specify a transfer function
zpk Specify a zero-pole-gain model
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Purpose

Syntax

Description

Example

Generate an s-plane grid of constant damping factors and natural frequencies

sgrid
sgrid(z,wn)

sgrid generates, for pole-zero and root locus plots, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to 10
rad/sec in steps of one rad/sec, and plots the grid over the current axis. If the
current axis contains a continuous s-plane root locus diagram or pole-zero map,
sgrid draws the grid over the plot.

sgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and natural frequencies in the vectors z and wn,
respectively. If the current axis contains a continuous s-plane root locus
diagram or pole-zero map, sgrid(z,wn) draws the grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate the
same s-plane grid.

Plot s-plane grid lines on the root locus for the following system.

2s2+5s5+1

sz+25+3

H(s) =

You can do this by typing
H=tf([2 5 1],[1 2 3])

Transfer function:
2s"2+5s + 1
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# Figure No_ 1 [H[=] E3
File Edit ¥iew Insert Tools Window Help

Deda "A A/ | @20

Root Locus
né2 g8 5 042- 028 014
4 Lo i
05 [B87s 4
< ) 2 15 1 iz |
E
05 rpars 1
1 ot 1
a2 068 & f4d..026 014
3 a5 4 05 o
Real Axis
See Also pzmap Plot pole-zero map
rlocus Plot root locus
zgrid Generate z-plane grid lines
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Purpose

Syntax

Description

Singular values of the frequency response of LTI models

sigma(sys)
sigma(sys,w)
sigma(sys,w,type)

sigma(sysi,sys2,...,sysN)
sigma(sysi,sys2,...,SysN,w)
sigma(sys1,sys2,...,sysN,w,type)

sigma(sys1, 'PlotStylel1',...,sysN, 'PlotStyleN')

[sv,w] = sigma(sys)
Sv = sigma(sys,w)

sigma calculates the singular values of the frequency response of an LTI model.
For an FRD model, sys, sigma computes the singular values of sys.Response
at the frequencies, sys.frequency. For continuous-time TF, SS, or ZPK models
with transfer function H(s), sigma computes the singular values of H(jw) as
a function of the frequency w. For discrete-time TF, SS, or ZPK models with
transfer function H(z) and sample time T, sigma computes the singular
values of
jooTs

He )

for frequencies w between 0 and the Nyquist frequency wy = TV T,.

The singular values of the frequency response extend the Bode magnitude
response for MIMO systems and are useful in robustness analysis. The
singular value response of a SISO system is identical to its Bode magnitude
response. When invoked without output arguments, sigma produces a singular
value plot on the screen.

sigma(sys) plots the singular values of the frequency response of an arbitrary
LTI model sys. This model can be continuous or discrete, and SISO or MIMO.
The frequency points are chosen automatically based on the system poles and
zeros, or from sys.frequency if sys is an FRD.

sigma(sys,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set
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w = {wmin,wmax}. To use particular frequency points, set w to the
corresponding vector of frequencies. Use logspace to generate logarithmically
spaced frequency vectors. The frequencies must be specified in rad/sec.

sigma(sys,[],type) or sigma(sys,w,type) plots the following modified
singular value responses:

type = 1 Singular values of the frequency response H_l, where H is
the frequency response of sys.

1l
\V]

type Singular values of the frequency response | + H.

type Singular values of the frequency response | + H_1 .

1]
w

These options are available only for square systems, that is, with the same
number of inputs and outputs.

To superimpose the singular value plots of several LTI models on a single
figure, use

sigma(sysi,sys2,...,sysN)

sigma(sys1,sys2,...,sysN,[],type) % modified SV plot

sigma(sysi,sys2,...,SysN,w) % specify frequency range/grid
The models sys1,sys2,...,sysN need not have the same number of inputs

and outputs. Each model can be either continuous- or discrete-time. You can
also specify a distinctive color, linestyle, and/or marker for each system plot
with the syntax

sigma(sys1, 'PlotStylet1',...,sysN, 'PlotStyleN')
See bode for an example.
When invoked with output arguments,

[sv,w] = sigma(sys)
SV = sigma(sys,w)

return the singular values sv of the frequency response at the frequencies w.
For a system with Nu input and Ny outputs, the array sv has min(Nu,Ny) rows
and as many columns as frequency points (length of w). The singular values at
the frequency w(k) are given by sv(:,k).



sigma

Example Plot the singular value responses of
0 _ 3s
H(s) = s"+s+10
s+1 2
s+5 S+6
and I + H(s).

You can do this by typing
H = [0 tf([3 0],[1 1 10]) ; tFf([1 11,[1 5]) tf(2,[1 6])]
subplot(211)

sigma(H)
subplot(212)
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Algorithm

See Also
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sigma(H,[],2)

Singular Values
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sigma uses the svd function in MATLAB to compute the singular values of a
complex matrix.

bode Bode plot

evalfr Response at single complex frequency
freqresp Frequency response computation
ltiview LTI system viewer

nichols Nichols plot

nyquist Nyquist plot
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Purpose

Syntax

Description

Initialize the SISO Design Tool

sisotool

sisotool(plant)

sisotool(plant,comp)

sisotool(views)
sisotool(views,plant,comp,sensor,prefilt)
sisotool(views,plant,comp,options)

When invoked without input arguments, sisotool opens a SISO Design GUI
for interactive compensator design. This GUI allows you to design a
single-input/single-output (SISO) compensator using root locus and Bode
diagram techniques.

By default, the SISO Design Tool:
= Opens root locus and open-loop Bode diagrams.

= Places the compensator, C, in the forward path in series with the plant, G.

= Assumes the prefilter, F, and the sensor, H, are unity gains. Once you specify
G and H, they are fixed in the feedback structure.
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This picture shows the SISO Design Tool.

Use the menu bar to import/export models, and to The feedback structure: Click on FS to change the feedback

edit them. Right-click menu functionality is available structure. Click on +/- to change the feedback sign.
under the Edit menu.

\ <) 5150 Design for System sys_dc
File Edit “iew Compensators Tools WWindow Help

i x 0 ¥ 2 [tim T XN *
Compensator Current Compensator
description: The default ‘ {C |
. Clz] = I -
compensator is V=1. s k3]
N Roct Locus Editer (C) - O pen-Leop Bodke Editer (C)
4
Use the right-click menu to 0
manipulate the 4 -
compensator and the N R
plots’ appearances. 2 ; o
Right-click in any plot E
region to open the menu. O - SRR
i ! -80
! 0
) K i
-4
& . . . . . : e Freg: Mah .
-2 -0 -& -5 -4 -2 0 10" 10! I

Real Axis Frequency (rackisec)

The sta.tus bar p.I'OV|dES _>‘ FRight-click on the plots for more design options.
useful information.

sisotool(plant) opens the SISO Design Tool, imports plant, and initializes
the plant model G to plant. The worskpace variable plant can be any SISO

LTI model created with either ss, tf, or zpk.

sisotool(plant,comp) initializes the plant model G to plant, the
compensator C to comp.

sisotool(plant,comp,sensor,prefilt) initializes the plant G to plant,
compensator C to comp, sensor H to sensor, and the prefilter F to prefilt. All
arguments must be SISO LTI objects.

sisotool(views) or sisotool(views,plant,comp) specifies the initial
configuration of the SISO Design Tool. The argument views can be any of the
following strings (or combination thereof):



sisotool

See Also

< 'rlocus' — Root Locus plot
= 'bode' — Bode diagrams of the open-loop response
= 'nichols’ — Nichols plot

= 'filter’ — Bode diagrams of the prefilter F and the closed-loop response
from the command into F to the output of the compensator G (see the
feedback structure figure below)

For example

sisotool('bode')

opens a SISO Design Tool with only the Bode Diagrams on.

sisotool(plant,comp,options) allows you to override the default
compensator location and feedback sign by using an extra input argument
options with the following fields:

= options.Location = 'forward' — Compensator in the forward loop
= options.Location = 'feedback' — Compensator in the feedback loop
< options.Sign = -1 — Negative feedback

= options.Sign = 1 — Positive feedback

You can design compensators for one of the following two feedback loop
configurations.

i = = J
+/- H FS o  HE{H} s
Compensator in the Compensator in the
Forward Path Feedback Path

The SISO Design Tool Supports Two Feedback Structures.

For more details on the SISO Design Tool, see “Designing Compensators” in
Getting Started with the Control System Toolbox.

bode Bode response
ltiview Open an LTI Viewer

5-205



sisotool

rlocus Root locus
nichols Nichols response
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Purpose

Syntax

Description

Example

Provide the output/input/array dimensions of LTI models, the model order of
TF, SS, and ZPK models, and the number of frequencies of FRD models

size(sys)
d = size(sys)

Ny = size(sys,1)

Nu = size(sys,2)

Sk = size(sys,2+Kk)

Ns = size(sys, 'order')

Nf = size(sys, 'frequency')

When invoked without output arguments, size (sys) returns a vector of the
number of outputs and inputs for a single LTI model. The lengths of the array
dimensions are also included in the response to size when sysisan LTI array.
size is the overloaded version of the MATLAB function size for LTI objects.

d = size(sys) returns:
< The row vector d = [Ny Nu] for a single LTI model sys with Ny outputs and
Nu inputs

= Therow vectord = [Ny Nu S1 S2 ... Sp] for an S1-by-S2-by-...-by-Sp array
of LTI models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension when sys
isan LTI array.

Ns = size(sys,'order’) returns the model order of a TF, SS, or ZPK model. This
is the same as the number of states for state-space models. When sys isan LTI
array, ns is the maximum order of all of the models in the LTI array.

NT

size(sys, 'frequency') returns the number of frequencies when sys is

an FRD. This is the same as the length of sys.frequency.

Consider the random LTI array of state-space models

sys = rss(5,3,2,3);

Its dimensions are obtained by typing
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size(sys)

3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

See Also isempty Test if LTI model is empty
issiso Test if LTI model is SISO
ndims Number of dimensions of an LTI array
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sminreal

Purpose
Syntax

Description

Remark

Example

Perform model reduction based on structure
msys = sminreal(sys)

msys = sminreal(sys) eliminates the states of the state-space model sys that
don't affect the input/output response. All of the states of the resulting
state-space model msys are also states of sys and the input/output response of
msys is equivalent to that of sys.

sminreal eliminates only structurally non minimal states, i.e., states that can
be discarded by looking only at hard zero entries in the A, B, and C matrices.
Such structurally nonminimal states arise, for example, when linearizing a
Simulink model that includes some unconnected state-space or transfer
function blocks.

The model resulting from sminreal(sys) is not necessarily minimal, and may
have a higher order than one resulting from minreal(sys). However,
sminreal (sys) retains the state structure of sys, while, in general,
minreal(sys) does not.
Suppose you concatenate two SS models, sys1 and sys2.

sys = [sys1,sys2];

This operation is depicted in the diagram below.

u ——— | sysl

V. —p  sys2

If you extract the subsystem sys1 from sys, with

sys(1,1)
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all of the states of sys, including those of sys2 are retained. To eliminate the
unobservable states from sys2, while retaining the states of sys1, type

sminreal(sys(1,1))

See Also minreal Model reduction by removing unobservable/
uncontrollable states or cancelling pole/zero pairs
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Purpose

Syntax

Description

Specify state-space models or convert an LTI model to state space

sys = ss(a,b,c,d)

sys = ss(a,b,c,d,Ts)

sys = ss(d)

sys = ss(a,b,c,d,ltisys)

sys = ss(a,b,c,d, 'Property1',vValuet,..., 'PropertyN',ValueN)
sys = ss(a,b,c,d,Ts, 'Property1',vValuel,..., 'PropertyN',ValueN)

SYyS_SS = sS(Sys)
SyS_sS = ss(sys, 'minimal')

ss is used to create real- or complex-valued state-space models (SS objects) or
to convert transfer function or zero-pole-gain models to state space.

Creation of State-Space Models
sys = ss(a,b,c,d) creates the continuous-time state-space model

AXx +Bu
Cx +Du

For a model with Nx states, Ny outputs, and Nu inputs:

= a is an Nx-by-Nx real- or complex-valued matrix.
= b is an Nx-by-Nu real- or complex-valued matrix.
= c is an Ny-by-Nx real- or complex-valued matrix.
= d is an Ny-by-Nu real- or complex-valued matrix.
The output sys is an SS model that stores the model data (see “State-Space

Models” on page 2-14). If D = 0, you can simply set d to the scalar 0 (zero),
regardless of the dimension.

sys = ss(a,b,c,d,Ts) creates the discrete-time model
x[n+1]
y[n]

Ax[n] +Bu[n]
Cx[n] + Du[n]
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Examples

5-212

with sample time Ts (in seconds). Set Ts = -10orTs = [] to leave the sample
time unspecified.

sys = ss(d) specifies a static gain matrix D and is equivalent to

sys = ss([],[1,[1],d)

sys = ss(a,b,c,d,ltisys) creates a state-space model with generic LTI
properties inherited from the LTI model 1tisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

See “Building LTI Arrays” on page 4-12 for information on how to build arrays
of state-space models.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'PropertyName’',PropertyValue

Each pair specifies a particular LTI property of the model, for example, the
input names or some notes on the model history. See the set entry and the
example below for details. Note that

sys = ss(a,b,c,d, 'Property1',Valuel,..., 'PropertyN',ValueN)
is equivalent to the sequence of commands.
sys = ss(a,b,c,d)

set(sys, 'Propertyi1',Valuel,..., 'PropertyN',ValueN)

Conversion to State Space

sys_ss = ss(sys) converts an arbitrary TF or ZPK model sys to state space.
The output sys_ss is an equivalent state-space model (SS object). This
operation is known as state-space realization.

sys_ss = ss(sys, 'minimal') produces a state-space realization with no
uncontrollable or unobservable states. This is equivalent to sys_ss =
minreal(ss(sys)).

Example 1
The command



SS

sys = ss(A,B,C,D,0.05, 'statename',{'position' 'velocity'},...
"inputname’', 'force',...
'notes', 'Created 10/15/96")

creates a discrete-time model with matrices A, B, C, D and sample time 0.05
second. This model has two states labeled position and velocity, and one
input labeled force (the dimensions of A, B, C, D should be consistent with
these numbers of states and inputs). Finally, a note is attached with the date
of creation of the model.

Example 2
Compute a state-space realization of the transfer function

s+1

33+352+35+2

2
s +3

H(s) =

2
s +s+1

by typing

H= [tf([1 1],[1 3 3 2]) ; tf([1 0 3],[1 1 1])];
Ssys = ss(H);
size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

Note that the number of states is equal to the cumulative order of the SISO
entries of H(s).

To obtain a minimal realization of H(s), type

Sys = ss(H, 'min');
size(sys)

State-space model with 2 outputs, 1 input, and 3 states.

The resulting state-space model order has order three, the minimum number
of states needed to represent H(s). This can be seen directly by factoring H(s)
as the product of a first order system with a second order one.
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s+1
1 2
—_ S +s+1
H(s) = |s+2 0 2
0o 1] |S*3
52 +s+1
See Also dss Specify descriptor state-space models.
frd Specify FRD models or convert to an FRD.
get Get properties of LTI models.
set Set properties of LTI models.
ssdata Retrieve the A, B, C, D matrices of state-space model.
tf Specify transfer functions or convert to TF.
zpk Specify zero-pole-gain models or convert to ZPK.
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Purpose
Syntax

Description

Example

See Also

State coordinate transformation for state-space models
SysT = ss2ss(sys,T)
Given a state-space model sys with equations

X = Ax+Bu
y = Cx+Du

(or their discrete-time counterpart), ss2ss performs the similarity
transformation X = Tx on the state vector x and produces the equivalent
state-space model sysT with equations.

% = TAT %+ TBu

y = CT % +Du

sysT = ss2ss(sys,T) returns the transformed state-space model sysT given
sys and the state coordinate transformation T. The model sys must be in
state-space form and the matrix T must be invertible. ss2ss is applicable to
both continuous- and discrete-time models.

Perform a similarity transform to improve the conditioning of the A matrix.

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See ssbal for a more direct approach.

balreal Grammian-based 1/0 balancing
canon Canonical state-space realizations
ssbal Balancing of state-space models using diagonal

similarity transformations
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Purpose

Syntax

Description

Example
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Balance state-space models using a diagonal similarity transformation

[sysb,T] = ssbal(sys)

[sysb,T] = ssbal(sys,condT)

Given a state-space model sys with matrices (A, B, C, D),
[sysb,T] = ssbal(sys)

computes a diagonal similarity transformation T and a scalar a such that

TAT ! TB/a

aCcT? o0

has approximately equal row and column norms. ssbal returns the balanced
model sysb with matrices
-1 -1
(TAT 7, TB/a,aCT 7, D)

and the state transformation X = Tx where X is the new state.

[sysb,T] = ssbal(sys,condT) specifies an upper bound condT on the
condition number of T. Since balancing with ill-conditioned T can
inadvertently magnify rounding errors, condT gives control over the worst-case
roundoff amplification factor. The default value is condT=Inf.

ssbal returns an error if the state-space model sys has varying state
dimensions.

Consider the continuous-time state-space model with the following data.

1 10* 107 1

A=lg 12105 B=1]. c = [0.1 10 100]
101 0 1

a = [1 1e4 1e2;0 1e2 1e5;10 1 0];

b = [1;1;1];

c = [0.1 10 1e2];

sys = ss(a,b,c,0)
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Algorithm

See Also

Balance this model with ssbal by typing

ssbal(sys)
a:
x1
X2
X3
b:
X1
X2
X3
C:
y1
d:
y1

x1

2560

ut
0.125
0.5
32

x1

Continuous-time system.

X2 x3
2500 0.39063
100 1562.5
64 0
X2 x3
20 3.125

Direct inspection shows that the range of numerical values has been
compressed by a factor 100 and that the B and C matrices now have nearly

equal norms.

ssbal uses the MATLAB function balance to compute T and a.

balreal
SS2ss

Grammian-based 1/0O balancing
State coordinate transformation
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Purpose

Syntax

Description

See Also
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Quick access to state-space model data

[a,b,c,d] = ssdata(sys)
[a,b,c,d, Ts] = ssdata(sys)

[a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array)
data (A, B, C, D) from the state-space model (LTI array) sys. If sysisa
transfer function or zero-pole-gain model (LTI array), it is first converted to
state space. See Table 11-16, “State-Space Model Properties,” on page 11-195
for more information on the format of state-space model data.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.statename

dssdata Quick access to descriptor state-space data
get Get properties of LTI models

set Set model properties

ss Specify state-space models

tfdata Quick access to transfer function data
zpkdata Quick access to zero-pole-gain data
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Purpose

Syntax

Description

Example

Build an LTI array by stacking LTI models or LTI arrays along array
dimensions of an LTI array

sys = stack(arraydim,sysi1,sys2,...)

sys = stack(arraydim,sys1,sys2,...) produces an array of LTI models sys
by stacking (concatenating) the LTI models (or LTI arrays) sys1,sys2,...
along the array dimension arraydim. All models must have the same number
of inputs and outputs (the same 1/O dimensions). The 1/O dimensions are not
counted in the array dimensions. See “Dimensions, Size, and Shape of an LTI
Array” on page 4-7, and “Building LTI Arrays Using the stack Function” on
page 4-15 for more information.

If sys1 and sys2 are two LTI models with the same 1/O dimensions:

< stack(1,sys1,sys2) produces a 2-by-1 LTI array.
= stack(2,sys1,sys2) produces a 1-by-2 LTI array.
= stack(3,sys1,sys2) produces a 1-by-1-by-2 LTI array.
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Purpose

Syntax

Description
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Step response of LTI systems

step(sys)
step(sys,t)

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)
step(sys1, 'PlotStyle1',...,sysN, 'PlotStyleN')

[y,t,x] = step(sys)

step calculates the unit step response of a linear system. Zero initial state is
assumed in the state-space case. When invoked with no output arguments, this
function plots the step response on the screen.

step(sys) plots the step response of an arbitrary LTI model sys. This model
can be continuous or discrete, and SISO or MIMO. The step response of
multi-input systems is the collection of step responses for each input channel.
The duration of simulation is determined automatically based on the system
poles and zeros.

step(sys,t) sets the simulation horizon explicitly. You can specify either a
final time t = Tfinal (in seconds), or a vector of evenly spaced time samples
of the form

t = 0:dt:Tfinal

For discrete systems, the spacing dt should match the sample period. For
continuous systems, dt becomes the sample time of the discretized simulation
model (see “Algorithm”), so make sure to choose dt small enough to capture
transient phenomena.

To plot the step responses of several LTI models sysf1,..., sysN on a single
figure, use

step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,t)
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Example

All systems must have the same number of inputs and outputs but may
otherwise be a mix of continuous- and discrete-time systems. This syntax is
useful to compare the step responses of multiple systems.

You can also specify a distinctive color, linestyle, and/or marker for each
system. For example,

step(syst,'y:',sys2,'g--")

plots the step response of sys1 with a dotted yellow line and the step response
of sys2 with a green dashed line.

When invoked with output arguments,

[y,t] = step(sys)
[y,t,x] = step(sys) % for state-space models only
y = step(sys,t)

return the output response y, the time vector t used for simulation, and the
state trajectories x (for state-space models only). No plot is drawn on the
screen. For single-input systems, y has as many rows as time samples (length
of t), and as many columns as outputs. In the multi-input case, the step
responses of each input channel are stacked up along the third dimension of y.
The dimensions of y are then

(length of t) x (number of outputs) x (number of inputs)

andy(:,:,j) gives the response to a unit step command injected in the jth
input channel. Similarly, the dimensions of x are

(length of t) x (number of states) x (number of inputs)

Plot the step response of the following second-order state-space model.

Xi| _ |-0.5572 -0.7814||X1| |1 -1||U1
X, L07814 0 [|x| [0 2]|u,

y=[1.9691 6.4493) H
X2
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Algorithm

See Also
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a
b
c

[-0.5572

[1.9691

sys = ss(a,b,c,0);

step(sys)

<) Figure No. 1

File Edit “iew Inset Tools

-0.7814;0.7814 O0];

[1 -1;0 2];

6.4493];

=] B3
Window Help

Deda "A A/ | @20

From: U1

Step Response
From: L2)

Amplitude:
Ta: %10

| | | |
15 200 5] 10 15 20
Time (zec)

The left plot shows the step response of the first input channel, and the right
plot shows the step response of the second input channel.

Continuous-time models are converted to state space and discretized using
zero-order hold on the inputs. The sampling period is chosen automatically
based on the system dynamics, except when a time vector t = 0:dt:Tf is
supplied (dt is then used as sampling period).

impulse
initial
1sim

ltiview

Impulse response

Free response to initial condition
Simulate response to arbitrary inputs
LTI system viewer
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Purpose

Syntax

Description

Specify transfer functions or convert LTI model to transfer function form

sys = tf(num,den)

sys = tf(num,den,Ts)

sys = tf(M)

sys = tf(num,den,ltisys)

sys = tf(num,den, 'Property1',vValuel,..., 'PropertyN',ValueN)
sys = tf(num,den,Ts, 'Property1',vValuel,..., 'PropertyN',ValueN)
sys = tf('s')

S
sys = tf('z")

tfsys = tf(sys)
tfsys = tf(sys, ' 'inv') % for state-space sys only

tf is used to create real- or complex-valued transfer function models (TF
objects) or to convert state-space or zero-pole-gain models to transfer function
form.

Creation of Transfer Functions

sys = tf(num,den) creates a continuous-time transfer function with
numerator(s) and denominator(s) specified by num and den. The output sys isa
TF object storing the transfer function data (see “Transfer Function Models” on
page 2-8).

In the SISO case, num and den are the real- or complex-valued row vectors of
numerator and denominator coefficients ordered in descending powers of s.
These two vectors need not have equal length and the transfer function need
not be proper. For example, h = tf([1 0],1) specifies the pure derivative
h(s) = s.

To create MIMO transfer functions, specify the numerator and denominator of
each SISO entry. In this case:

= num and den are cell arrays of row vectors with as many rows as outputs and
as many columns as inputs.
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< The row vectors num{i, j} and den{i, j} specify the numerator and
denominator of the transfer function from input j to output i (with the SISO
convention).

If all SISO entries of a MIMO transfer function have the same denominator,
you can set den to the row vector representation of this common denominator.
See “Examples” for more details.

sys = tf(num,den,Ts) creates a discrete-time transfer function with sample
time Ts (in seconds). Set Ts = -1o0r Ts = [] to leave the sample time
unspecified. The input arguments num and den are as in the continuous-time
case and must list the numerator and denominator coefficients in descending
powers of z.

sys = tf (M) creates a static gain M (scalar or matrix).

sys = tf(num,den,ltisys) creates a transfer function with generic LTI
properties inherited from the LTI model 1tisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

There are several ways to create LTI arrays of transfer functions. To create
arrays of SISO or MIMO TF models, either specify the numerator and
denominator of each SISO entry using multidimensional cell arrays, or use a
for loop to successively assign each TF model in the array. See “Building LTI
Arrays” on page 4-12 for more information.

Any of the previous syntaxes can be followed by property name/property value
pairs

'"Property',Value

Each pair specifies a particular LTI property of the model, for example, the
input names or the transfer function variable. See set entry and the example
below for details. Note that

sys = tf(num,den, 'Property1',Valuel,..., 'PropertyN',ValueN)
is a shortcut for

sys = tf(num,den)
set(sys, 'Property1',Valuel,..., 'PropertyN',ValueN)
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Examples

Transfer Functions as Rational Expressions in s or z

You can also use real- or complex-valued rational expressions to create a TF
model. To do so, first type either:

«s = tf('s') tospecify a TF model using a rational function in the Laplace
variable, s.

-z = tf('z',Ts) to specify a TF model with sample time Ts using a rational
function in the discrete-time variable, z.

Once you specify either of these variables, you can specify TF models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Transfer Function

tfsys = tf(sys) converts an arbitrary SS or ZPK LTI model sys to transfer
function form. The output tfsys (TF object) is the transfer function of sys. By
default, tf uses zero to compute the numerators when converting a state-space
model to transfer function form. Alternatively,

tfsys = tf(sys, 'inv')
uses inversion formulas for state-space models to derive the numerators. This

algorithm is faster but less accurate for high-order models with low gain at
s =0.

Example 1
Create the two-output/one-input transfer function

p+1
2
H(p) = [P *2p+2
1

p

with input current and outputs torque and ang velocity.
To do this, type

num = {[1 1] ; 1}
den {[1 2 2] ; [1 01}
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H = tf(num,den, 'inputn', 'current’',...
‘outputn',{'torque' 'ang. velocity'},...
'variable','p"')

Transfer function from input "current" to output...
p+ 1
torque: -------------
pr2 +2p + 2

1
ang. velocity: -
p
Note how setting the 'variable' property to 'p' causes the result to be
displayed as a transfer function of the variable p.

Example 2
To use a rational expression to create a SISO TF model, type

s = tf('s');

H = s/(s"2 + 2*s +10);
This produces the same transfer function as
h = tf([1 0],[1 2 10]);

Example 3
Specify the discrete MIMO transfer function

1 Y4

H(z) = z+03 z+03
—-Z+2 3

z+0.3 z+0.3

with common denominator d(z) = z + 0.3 and sample time of 0.2 seconds.

nums = {1 [1 0];[-1 2] 3}
Ts = 0.2
H = tf(nums,[1 0.3],Ts) % Note: row vector for common den. d(z)
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Example 4
Compute the transfer function of the state-space model with the following data.

A L —2} ., B {2 _J ., c=[10, D=Jo1
To do this, type

sys = ss([-2 -1;1 -2],[1 1;2 -1],[1 O],[0 1])
tf(sys)

Transfer function from input 1 to output:

s”"2 +4 s + 5

Transfer function from input 2 to output:
s"2 +5s + 8

s”"2 +4 s +5

Example 5
You can use a for loop to specify a 10-by-1 array of SISO TF models.

s = tf('s")
H = tf(zeros(1,1,10));
for k=1:10,
H(:,:,K) = k/(8"2+s+K);
end

The first statement pre-allocates the TF array and fills it with zero transfer
functions.

Discrete-Time The control and digital signal processing (DSP) communities tend to use
Conventions different conventions to specify discrete transfer functions. Most control
engineers use the z variable and order the numerator and denominator terms

in descending powers of z, for example,

2
z

h(z) = ——
(2) 72+2z2+3
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The polynomials 22 and z2+2z+3 are then specified by the row vectors
[1 0 0]and [1 2 3], respectively. By contrast, DSP engineers prefer to write
this transfer function as

-1 1
h(z7) = ———
1+277 1+ 32_2

and specify its numerator as 1 (instead of [1 0 0]) and its denominator as
[1 2 3].

tf switches convention based on your choice of variable (value of the
'Variable' property).

Variable Convention

'z' (default) Use the row vector [ak ... a1l a0] to specify the

. k - .
polynomial a,z" +... +a,z + a, (coefficients ordered in
descending powers of z).

'zr-1', ' Use the row vector [1b0 b1 ... bk] to specify the
polynomialby + b,z et b,z = (coefficients in
ascending powers of z " or q).

For example,
g = tf([1 1]1,[1 2 3],0.1)
specifies the discrete transfer function

z+1
9(z) =
z"+2z+3
because z is the default variable. In contrast,
h = tf([1 1],[1 2 3],0.1,"'variable','z"-1")

uses the DSP convention and creates
-1 1+77%

) = ———— = 29(2)
1+22_1+3z_2

h(z
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Algorithm

See Also

See also filt for direct specification of discrete transfer functions using the
DSP convention.

Note that tf stores data so that the numerator and denominator lengths are
made equal. Specifically, tf stores the values

num = [0 1 1]; den = [1 2 3]
for g (the numerator is padded with zeros on the left) and the values
num = [1 1 0]; den = [1 2 3]

for h (the numerator is padded with zeros on the right).

tf uses the MATLAB function poly to convert zero-pole-gain models, and the
functions zero and pole to convert state-space models.

filt Specify discrete transfer functions in DSP format
frd Specify a frequency response data model

get Get properties of LTI models

set Set properties of LTI models

ss Specify state-space models or convert to state space
tfdata Retrieve transfer function data

zpk Specify zero-pole-gain models or convert to ZPK
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Purpose

Syntax

Description

Example
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Quick access to transfer function data

[num,den] tfdata(sys)
[num,den] tfdata(sys,'v')
[num,den,Ts] = tfdata(sys)

[num,den] = tfdata(sys) returns the numerator(s) and denominator(s) of
the transfer function for the TF, SS or ZPK model (or LTI array of TF, SS or
ZPK models) sys. For single LTI models, the outputs num and den of tfdata are
cell arrays with the following characteristics:

= num and den have as many rows as outputs and as many columns as inputs.

< The (i,j) entries num{i,j} and den{i, j} are row vectors specifying the
numerator and denominator coefficients of the transfer function from input
j to output i. These coefficients are ordered in descending powers of s or z.

For arrays sys of LTI models, num and den are multidimensional cell arrays
with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer
function form using tf. See Table 11-15, “LTI Properties,” on page 11-194 for
more information on the format of transfer function model data.

For SISO transfer functions, the syntax
[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row vectors
rather than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.variable
Given the SISO transfer function

h = tf([1 1],[1 2 5])
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you can extract the numerator and denominator coefficients by typing
[num,den] = tfdata(h,'v"')

num =
0 1 1

den =
1 2 5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing
H=T[h; tf(1,[1 11)]

the command
[num,den] = tfdata(H)

now returns two cell arrays with the numerator/denominator data for each
SISO entry. Use celldisp to visualize this data. Type

celldisp(num)

and MATLAB returns the numerator vectors of the entries of H.

num{1} =
0 1 1
num{2} =
0 1
Similarly, for the denominators, type
celldisp(den)
den{1} =
1 2 5
den{2} =
1 1
See Also get Get properties of LTI models
ssdata Quick access to state-space data
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tf Specify transfer functions
zpkdata Quick access to zero-pole-gain data
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totaldelay

Purpose
Syntax

Description

Example

See Also

Return the total combined 1/O delays for an LTI model
td = totaldelay(sys)

td = totaldelay(sys) returns the total combined I/O delays for an LTI model
sys. The matrix td combines contributions from the InputDelay, OutputDelay,
and ioDelay properties, (see set on page 11-192 or type 1tiprops for details on
these properties).

Delays are expressed in seconds for continuous-time models, and as integer
multiples of the sample period for discrete-time models. To obtain the delay
times in seconds, multiply td by the sample time sys.Ts.

sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2;

sys.outputd = 1.5;

td = totaldelay(sys)

o°

ec input delay

2s
1.5 sec output delay

o°

td =
3.5000

The resulting 1/0 map is

-2s 1 -3.5s1
e x_e—l.SS =e g

This is equivalent to assigning an 1/O delay of 3.5 seconds to the original model
sys.

delay2z Change transfer functions of discrete-time LTI models
with delays to rational functions or absorbs FRD delays
into the frequency response phase information
hasdelay True for LTI models with delays
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Purpose Transmission zeros of LTI models
Syntax z = zero(sys)
[z,9ain] = zero(sys)
Description zero computes the zeros of SISO systems and the transmission zeros of MIMO

systems. For a MIMO system with matrices (A, B, C, D), the transmission
zeros are the complex values A for which the normal rank of

A-Al B
C D
drops.

z = zero(sys) returns the (transmission) zeros of the LTI model sys as a
column vector.

[z,gain] = zero(sys) also returns the gain (in the zero-pole-gain sense) if
sys is a SISO system.

Algorithm The transmission zeros are computed using the algorithm in [1].
See Also pole Compute the poles of an LTI model
pzmap Compute the pole-zero map
References [1] Emami-Naeini, A. and P. Van Dooren, “Computation of Zeros of Linear

Multivariable Systems,” Automatica, 18 (1982), pp. 415-430.
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Purpose

Syntax

Description

Example

Generate a z-plane grid of constant damping factors and natural frequencies

zgrid
zgrid(z,wn)

zgrid generates, for root locus and pole-zero maps, a grid of constant damping
factors from zero to one in steps of 0.1 and natural frequencies from zero to 1t
in steps of 1/10, and plots the grid over the current axis. If the current axis
contains a discrete z-plane root locus diagram or pole-zero map, zgrid draws
the grid over the plot without altering the current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural frequency
lines for the damping factors and normalized natural frequencies in the vectors
z and wn, respectively. If the current axis contains a discrete z-plane root locus
diagram or pole-zero map, zgrid(z,wn) draws the grid over the plot. The
frequency lines for unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([]1,[]1) draws the unit circle.
Alternatively, you can select Grid from the right-click menu to generate the
same z-plane grid.

Plot z-plane grid lines on the root locus for the system

2
H(z) = 22" -3.4z+15

72_162+0.8
by typing
H=tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

Transfer function:
2z"2 -3.4z+1.5

z*2 - 1.6 z + 0.8

Sampling time: unspecified
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To see the z-plane grid on the root locus plot, type

rlocus(H)

zgrid

axis('square')

# Figure No_ 1

File  Edit

Wiew

IS[=] E3

Insert Tools ‘Window Help

Deda "A A/ | @20

Imag Axis

-0.2

04

-0 -

08

Root Locus

0s

0E

04t

0z

o

ausT

4sT

Pt 0T : S ar

RN OT : AT |
FwisT nréT it

-0.5 1] 0.5 1
Real Axis

See Also pzmap
rlocus
sgrid
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Plot pole-zero map of LTI systems
Plot root locus
Generate s-plane grid lines
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Purpose

Syntax

Description

Specify zero-pole-gain models or convert LTI model to zero-pole-gain form

sys = zpk(z,p,k)

sys = zpk(z,p,k,Ts)

sys = zpk(M)

sys = zpk(z,p,k,ltisys)

sys = zpk(z,p,k, 'Propertyi',Valuel,..., 'PropertyN',ValueN)
sys = zpk(z,p,k,Ts, 'Propertyl',Valuel,..., 'PropertyN',ValueN)

sys = zpk('s')
sys = zpk('z")

zsys = zpk(sys)
zsys = zpk(sys,'inv') % for state-space sys only

zpk is used to create zero-pole-gain models (ZPK objects) or to convert TF or SS
models to zero-pole-gain form.

Creation of Zero-Pole-Gain Models

sys = zpk(z,p,k) creates a continuous-time zero-pole-gain model with zeros
z, poles p, and gain(s) k. The output sys is a ZPK object storing the model data
(see “LTI Objects” on page 2-3).

In the SISO case, z and p are the vectors of real- or complex-valued zeros and
poles, and k is the real- or complex-valued scalar gain.

_ (s—=2(1))(s—=2(2))...(s—z(m))
) = K @) -p@))...5 - p(n)

Set z or p to [ ] for systems without zeros or poles. These two vectors need not
have equal length and the model need not be proper (that is, have an excess of
poles).

You can also use rational expressions to create a ZPK model. To do so, use
either:

= s = zpk('s"') tospecify a ZPK model from a rational transfer function of the
Laplace variable, s.
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-z =zpk('z',Ts) tospecify a ZPK model with sample time Ts from a rational
transfer function of the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as real- or complex-valued rational expressions in the variable s or z.

To create a MIMO zero-pole-gain model, specify the zeros, poles, and gain of
each SISO entry of this model. In this case:

=« z and p are cell arrays of vectors with as many rows as outputs and as many
columns as inputs, and k is a matrix with as many rows as outputs and as
many columns as inputs.

< The vectors z{i,j} and p{i, j} specify the zeros and poles of the transfer
function from input j to output i.

= k(1i,j) specifies the (scalar) gain of the transfer function from input j to
output i.

See below for a MIMO example.

sys = zpk(z,p,k,Ts) creates a discrete-time zero-pole-gain model with
sample time Ts (in seconds). Set Ts = -10r Ts = [] to leave the sample time
unspecified. The input arguments z, p, k are as in the continuous-time case.

sys = zpk(M) specifies a static gain M.

sys zpk(z,p,k,1ltisys) creates a zero-pole-gain model with generic LTI
properties inherited from the LTI model 1tisys (including the sample time).
See “Generic Properties” on page 2-26 for an overview of generic LTI
properties.

To create an array of ZPK models, use a for loop, or use multidimensional cell
arrays for z and p, and a multidimensional array for k.

Any of the previous syntaxes can be followed by property name/property value
pairs.

'"PropertyName',PropertyValue
Each pair specifies a particular LTI property of the model, for example, the

input names or the input delay time. See set entry and the example below for
details. Note that
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Variable
Selection

Example

sys = zpk(z,p,k, 'Property1',Valuel,..., 'PropertyN',ValueN)
is a shortcut for the following sequence of commands.

sys = zpk(z,p,k)
set(sys, 'Propertyi',Valuel,..., 'PropertyN',ValueN)

Zero-Pole-Gain Models as Rational Expressions in s or z

You can also use rational expressions to create a ZPK model. To do so, first type
either:

= s = zpk('s") tospecify a ZPK model using a rational function in the Laplace
variable, s.

-z = zpk('z',Ts) to specify a ZPK model with sample time Ts using a
rational function in the discrete-time variable, z.

Once you specify either of these variables, you can specify ZPK models directly
as rational expressions in the variable s or z by entering your transfer function
as a rational expression in either s or z.

Conversion to Zero-Pole-Gain Form

zsys = zpk(sys) converts an arbitrary LTI model sys to zero-pole-gain form.
The output zsys is a ZPK object. By default, zpk uses zero to compute the zeros
when converting from state-space to zero-pole-gain. Alternatively,

zsys = zpk(sys, 'inv')

uses inversion formulas for state-space models to compute the zeros. This
algorithm is faster but less accurate for high-order models with low gain at
s=0.

As for transfer functions, you can specify which variable to use in the display
of zero-pole-gain models. Available choices include s (default) and p for
continuous-time models, and z (default), z_l, orqg = z* for discrete-time
models. Reassign the 'Variable' property to override the defaults. Changing
the variable affects only the display of zero-pole-gain models.

Example 1
Specify the following zero-pole-gain model.
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1

H(z) = z-0.3
2(z+0.5)
(z=0.1+j)(z-0.1-))

To do this, type

z = {[] ; -0.5}

p={0.3; [0.1+1 0.1-1i]}

k =[1; 2]

H = zpk(z,p,k,-1) % unspecified sample time
Example 2

Convert the transfer function

h = tf([-10 20 0],[1 7 20 28 19 5])

Transfer function:
-10 s"2 + 20 s

s"5 +7 s"4 + 20 s"3 + 28 s"2 + 19 s + 5
to zero-pole-gain form by typing

zpk(h)

Zero/pole/gain:

-10 s (s-2)

Example 3
Create a discrete-time ZPK model from a rational expression in the variable z,
by typing

z = zpk('z',0.1);

H= (z+.1)*(z+.2)/(z"2+.6*z+.09)

Zero/pole/gain:
(z+0.1) (z+0.2)
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(z+0.3) "2
Sampling time: 0.1

Algorithm zpk uses the MATLAB function roots to convert transfer functions and the
functions zero and pole to convert state-space models.

See Also frd Convert to frequency response data models
get Get properties of LTI models
set Set properties of LTI models
SS Convert to state-space models
tf Convert to TF transfer function models
zpkdata Retrieve zero-pole-gain data
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Purpose

Syntax

Description

Example
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Quick access to zero-pole-gain data

[z,p,k] = zpkdata(sys)
[z,p,k] = zpkdata(sys,'v"')
[z,p,k,Ts,Td] = zpkdata(sys)

[z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k of the zero-
pole-gain model sys. The outputs z and p are cell arrays with the following
characteristics:

= z and p have as many rows as outputs and as many columns as inputs.

< The (i,j) entries z{i,j} and p{i, j} are the (column) vectors of zeros and
poles of the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many columns
as inputs such that k (i, j) is the gain of the transfer function from input j to
output i. If sys is a transfer function or state-space model, it is first converted
to zero-pole-gain form using zpk. See Table 11-15, “LTI Properties,” on page
11-194 for more information on the format of state-space model data.

For SISO zero-pole-gain models, the syntax
[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors rather
than as cell arrays (see example below).

[z,p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts and the
input delay data Td. For continuous-time models, Td is a row vector with one
entry per input channel (Td(j) indicates by how many seconds the jth input is
delayed). For discrete-time models, Td is the empty matrix [] (see d2d for
delays in discrete systems).

You can access the remaining LTI properties of sys with get or by direct
referencing, for example,

sys.Ts
sys.inputname
Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+1 0.1-1]},[1;2],-1)
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Zero/pole/gain from input to output...

#1: -------

(z*2 - 0.2z + 1.01)

Sampling time: unspecified
you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)

Z =
[ 0]
[-0.5000]
p =
[ 0.3000]
[2x1 double]
k =

1
2

To access the zeros and poles of the second output channel of H, get the content
of the second cell in z and p by typing

z{2,1}

ans =
-0.5000

p{2,1}

ans =
0.1000+ 1.0000i
0.1000- 1.0000i

See Also get Get properties of LTI models
ssdata Quick access to state-space data
tfdata Quick access to transfer function data
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zpk Specify zero-pole-gain models
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6 Block Reference

Introduction

The Control System Toolbox provides one block for use with Simulink, the LTI
System Block. Its reference page includes this information:

= The block name and icon

= The purpose of the block

= A description of the block

= The block parameters and dialog box including a brief description of each
parameter



LTI System

Purpose Import LTI System
Description The LTI System block imports linear, time-invariant (LTI) systems into
Simulink.

1,110 P

Dialog Box

— LTI Block [maszk] [link]
The LTI Spstem block accepts both continuous and dizscrete LT] models
az defined in the Control System Toolbox. Transfer function, state-space,
and zero-pole-gain formats are all supported in this block.

Mote: Initial states are only meaningful for state-space systems.

=
F

LTI spstem variable
.01 10
|mitial states. [state-space anly]

Ju

QK I Cancel | Help Lppli

LTI system variable
Enter your LTI model. This block supports state-space, zero/pole/gain, and
transfer function formats. Your model can be discrete- or continuous-time.

Initial states (state-space only)
If your model is in state-space format, you can specify the initial states in
vector format. The default is zero for all states.
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Symbols
5-233

A

acker 5-11, 6-3

algebraic loop 5-79

append 5-13

array selector for LTI Viewer 2-22
augstate 5-16

axis grouping for LTI Viewer 2-23

B

balancing realizations 5-17

balreal 5-17

block diagram. See model building
bode (Bode plots) 5-22

bodemag (Bode magnitude plots) 5-27

C
c2d 5-28

cancellation 5-142
canon 5-31
canonical realizations 5-31
care 5-33
cell array 5-93
chgunits 5-37
companion realizations 5-31
comparing models 5-22
concatenation, model

LTI arrays 5-219
connect 5-37, 5-39
connection

feedback 5-76

parallel 5-171

series 5-188
continuous-time 5-107
conversion to. See conversion, model
random model 5-186
controllability
matrix (ctrb) 5-47
staircase form 5-49
conversion, model
between model types 5-212
continuous to discrete (c2d) 5-28
discrete to continuous (d2c) 5-51
with negative real poles 5-52
resampling
discrete models 5-54
state-space, to 5-212
covar 5-44
covariance
output 5-44
state 5-44
crossover frequencies
allmargin 5-12
margin 5-139
ctrb 5-47
ctrbf 5-49

D
d2c¢ 5-51
d2d 5-54
damp 5-55
damping 5-55
dare 5-57
dcgain 5-60
delay2z 5-61
delays
combining 5-233
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Index

conversion 5-61
delay2z 5-61
existence of, test for 5-96
hasdelay 5-96
1/0 5-192
input 5-192
output 5-193
Padé approximation 5-168
time 5-192
denominator
common denominator 5-224
property 5-194
specification 5-80
design
Kalman estimator 5-111
LQG 5-62, 5-119
pole placement 5-173
regulators 5-119, 5-179
state estimator 5-111
diagonal realizations 5-31
digital filter
specification 5-80
Dirac impulse 5-97
discrete-time models 5-107
equivalent continuous poles 5-55
frequency 5-25
Kalman estimator 5-111
random 5-65
discrete-time random models 5-65
discretization 5-28
available methods 5-28
dlgr 5-62
dlyap 5-64
drmodel 5-65
drss 5-65
dsort 5-67
DSP convention 5-80

dss 5-68
dssdata 5-70

E
esort 5-71

estim 5-73
estimator 5-111

current 5-113

discrete 5-111

discrete for continuous plant 5-115
evalfr 5-75

F
feedback 5-76

feedback 5-76
algebraic loop 5-79
negative 5-76
positive 5-76
filt 5-80, 5-82, 5-85
first-order hold (FOH) 5-28
frd 5-82
FRD (frequency response data) objects 5-82
data 5-85
frdata 5-85
frequencies
units, conversion 5-37
singular value plots 5-199
frdata 5-85
freqresp 5-87
frequency
crossover 5-139
for discrete systems 5-25
logarithmically spaced frequencies 5-22
natural 5-55
Nyquist 5-26



Index

frequency response
at single frequency (evalfr) 5-75
Bode plot 5-22
discrete-time frequency 5-25
freqresp 5-87
magnitude 5-22
MIMO 5-22
Nichols chart (ngrid) 5-149
Nichols plot 5-151
Nyquist plot 5-158
phase 5-22
plotting 5-22
singular value plot 5-199
viewing the gain and phase margins 5-139

G

gain
low frequency (DC) 5-60
state-feedback gain 5-62

gain margins 5-22

gensig 5-90

get 5-92

gram 5-94

gramian (gram) 5-17

H
Hamiltonian matrix and pencil 5-33
hasdelay 5-96

I
110

delays 5-192
dimensions 5-207
1/0 Selector for LTI Viewer 2-24

impulse 5-97
impulse response 5-97
inheritance 5-68
initial 5-101
initial condition 5-101
innovation 5-113
input
delays 5-192
Dirac impulse 5-97
names 5-193
See also InputName
number of inputs 5-207
pulse 5-90
sine wave 5-90
square wave 5-90
interconnection. See model building
inv 5-105
inversion 5-105
limitations 5-106
isct 5-107
isdt 5-107
isempty 5-108
isproper 5-109
issiso 5-110

K
kalman 5-111

Kalman estimator
current 5-113
discrete 5-111
innovation 5-113
steady-state 5-111

kalmd 5-115
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Index

L
LFT (linear-fractional transformation) 5-117
LQG (linear quadratic-gaussian) method
continuous LQ regulator 5-123
cost function 5-62
current regulator 5-120
discrete LQ regulator 5-62
Kalman state estimator 5-111
LQ-optimal gain 5-123
optimal state-feedback gain 5-123
regulator 5-119
1qgr 5-123
lgrd 5-124
1gry 5-126
1sim 5-127
LTI arrays
building 5-219
concatenation 5-219
shape, changing 5-182
stack 5-219
LTI models
comparing multiple models 5-22
dimensions 5-148
discrete 5-107
discrete random 5-65
empty 5-108
frd 5-82
model order reduction 5-144
model order reduction (balanced realization)
5-17
ndims 5-148
norms 5-154
proper transfer function 5-109
random 5-186
second-order 5-167
SISO 5-110
ss 5-211

zpk 5-237
LTI properties
accessing property values (get) 5-92
admissible values 5-191
displaying properties 5-92
inheritance 5-68
property names 5-92, 5-190
property values 5-92, 5-190
setting 5-190
LTI Viewer 2-1, 5-134
array selector 2-22
axis grouping 2-23
1/O Selector 2-24
right-click menu for MIMO systems and LTI
arrays 2-21
ltiview 5-134
lyap 5-137
Lyapunov equation 5-45, 5-95
continuous 5-137
discrete 5-64

M

margin 5-139

margins, gain and phase 5-22

matched pole-zero 5-28

MIMO 5-97

minreal 5-142

model building
appending LTI models 5-13
feedback connection 5-76
modeling block diagrams (connect) 5-39
parallel connection 5-171
series connection 5-188

model order reduction 5-144
balanced realization 5-17

modred 5-144



Index

N
natural frequency 5-55
ndims 5-148
ngrid 5-149
Nichols
chart 5-149
plot (nichols) 5-151
nichols 5-151
noise
measurement 5-73
process 5-73
white 5-44
norm 5-154
norms of LTI systems (norm) 5-154
numerator
property 5-194
specification 5-80
value 5-93
Nyquist
frequency 5-26
plot (nyquist) 5-158
nyquist 5-158

O

observability
matrix (ctrb) 5-163
staircase form 5-165

obsv 5-163

obsvf 5-165

operations on LTI models
append 5-13
augmenting state with outputs 5-16
diagonal building 5-13
inversion 5-105
sorting the poles 5-67

ord2 5-167

output
covariance 5-44
delays 5-193
names 5-193
names. See also OutputName
number of outputs 5-207

P
pade 5-168

Padé approximation (pade) 5-168
parallel 5-171
parallel connection 5-171
phase margins 5-22
place 5-173
plotting
multiple systems 5-22
Nichols chart (ngrid) 5-149
s-plane grid (sgrid) 5-197
z-plane grid (zgrid) 5-235
pole 5-175
pole placement 5-173
poles
computing 5-175
damping 5-55
equivalent continuous poles 5-55
multiple 5-175
natural frequency 5-55
pole-zero map 5-176
sorting by magnitude (dsort) 5-67
s-plane grid (sgrid) 5-197
z-plane grid (zgrid) 5-235
pole-zero
cancellation 5-142
map (pzmap) 5-176
proper transfer function 5-109
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pulse 5-90
pzmap 5-176

R

random models 5-186
realization
state coordinate transformation 5-215

state coordinate transformation (canonical)

5-32
realizations 5-212
balanced 5-17
canonical 5-31
companion form 5-31
minimal 5-142
modal form 5-31
reduced-order models 5-144
balanced realization 5-17
regulation 5-179
resampling (d2d) 5-54
reshape 5-182
Riccati equation
continuous (care) 5-33
discrete (dare) 5-57
for LQG design 5-113
Hoo-like 5-35
stabilizing solution 5-33
right-click menu
MIMO response plots and LTI arrays 4-8
SISO response plots 4-4
rlocus 5-183
rmodel 5-186
root locus
plot (rlocus) 5-183
rss 5-186

S

sample time
resampling 5-54
setting 5-192
unspecified 5-26
second-order model 5-167
series 5-188
series connection 5-188
set 5-190

simulation of linear systems. See time response

sine wave 5-90
singular value plot (bode) 5-199
SISO 5-110
SISO Design Tool 3-2, 5-203
root locus right-click menu 3-27
square wave 5-90
ss 5-211
stability margins
margin 5-139
pole 5-175
pzmap 5-176
stabilizable 5-35
stabilizing, Riccati equation 5-33
stack 5-219
state
augmenting with outputs 5-16
covariance 5-44
discrete estimator 5-115
estimator 5-111
feedback 5-62
names 5-193
number of states 5-207
transformation 5-215
transformation (canonical) 5-32
uncontrollable 5-142
unobservable 5-142, 5-165
state-space models



Index

balancing 5-17
descriptor 5-68, 5-70
discrete random
discrete-time models 5-65
dss 5-68
initial condition response 5-101
quick data retrieval (dssdata) 5-70
random
continuous-time 5-186
realizations 5-212
specification 5-211
ss 5-211
step response 5-220
Sylvester equation 5-137
symplectic pencil 5-58

T
tf 5-223
time response
final time 5-97
impulse response (impulse) 5-97
initial condition response (initial) 5-101
MIMO 5-97
response to arbitrary inputs (1sim) 5-127
step response (step) 5-220
to white noise 5-44
totaldelay 5-233
transfer functions
common denominator 5-224
discrete-time 5-80
discrete-time random 5-65
DSP convention 5-80
filt 5-80
MIMO 5-223
quick data retrieval (tfdata) 5-230
random 5-186

specification 5-223

static gain 5-224

tf 5-223
transmission zeros. See zeros
triangle approximation 5-28
Tustin approximation 5-28

with frequency prewarping 5-28
tzero. See zero

Z

zero 5-234

zero-order hold (ZOH) 5-28

zero-pole-gain (ZPK) models
MIMO 5-238
quick data retrieval (zpkdata) 5-242
specification 5-237
static gain 5-238
zpk 5-237

zeros
computing 5-234
pole-zero map 5-176
transmission 5-234

zpk 5-237
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